2022年沪科版九年级数学下册第24章圆定向测评试卷(精选含详解).docx

上传人:可****阿 文档编号:32539374 上传时间:2022-08-09 格式:DOCX 页数:26 大小:794.18KB
返回 下载 相关 举报
2022年沪科版九年级数学下册第24章圆定向测评试卷(精选含详解).docx_第1页
第1页 / 共26页
2022年沪科版九年级数学下册第24章圆定向测评试卷(精选含详解).docx_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《2022年沪科版九年级数学下册第24章圆定向测评试卷(精选含详解).docx》由会员分享,可在线阅读,更多相关《2022年沪科版九年级数学下册第24章圆定向测评试卷(精选含详解).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,可以看作是中心对称图形的是( )ABCD2、如图,ABC内接于O,BAC30,BC6,则O的直径等于()A

2、10B6C6D123、如图,点A、B、C在上,则的度数是( )A100B50C40D254、如图,四边形ABCD内接于O,若ADC=130,则AOC的度数为( )A25B80C130D1005、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )A45B60C90D1206、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是( )AB1C2D7、如图,在中,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )ABCD8、点P(3,1)关于原点对称的点的坐标是( )A(3,1)B(3,1)

3、C(3,1)D(3,1)9、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD10、如图,将OAB绕点O逆时针旋转80得到OCD,若A的度数为110,D的度数为40,则AOD的度数是( )A50B60C40D30第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、边长相等、各内角均为120的六边形ABCDEF在直角坐标系内的位置如图所示,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60,经过2021次旋转之后,点B的坐标是_2、如果点与点B关于原点对称,那么点B的坐标是_3、如图,半圆O中,直径AB30,弦CDAB

4、,长为6,则由与AC,AD围成的阴影部分面积为_4、一条弧所对的圆心角为,弧长等于,则这条弧的半径为_5、如图,在O中,弦ABOC于E点,C在圆上,AB8,CE2,则O的半径AO_三、解答题(5小题,每小题10分,共计50分)1、如图,内接于,BC是的直径,D是AC延长线上一点(1)请用尺规完成基本作图:作出的角平分线交于点P(保留作图痕迹,不写作法)(2)在(1)所作的图形中,过点P作,垂足为E则PE与有怎样的位置关系?请说明理由2、如图,ABC内接于O,D是O的直径AB的延长线上一点,DCBOAC过圆心O作BC的平行线交DC的延长线于点E(1)求证:CD是O的切线;(2)若CD4,CE6,

5、求O的半径及tanOCB的值3、如图,ABC是O的内接三角形,连接AO并延长交O于点D,过点C作O的切线,与BA的延长线相交于点E(1)求证:ADEC;(2)若AD6,求线段AE的长4、在平面内,给定不在同一直线上的点A,B,C,如图所示点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,ABC的平分线交图形G于点D,连接AD,CD求证:AD=CD5、如图,点D是上一点,与相交于点F,且(1)求证:;(2)求证:;(3)若点D是中点,连接,求证:平分-参考答案-一、单选题1、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图

6、形就叫做中心对称图形,根据中心对称图形的概念求解【详解】A不是中心对称图形,故本选项不符合题意;B是中心对称图形,故本选项符合题意;C不是中心对称图形,故本选项不符合题意;D不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合2、D【分析】连接OB,OC,根据圆周角定理求出BOC的度数,再由OB=OC判断出OBC是等边三角形,由此可得出结论【详解】解:连接OB,OC,BAC=30,BOC=60OB=OC,BC=6,OBC是等边三角形,OB=BC=6O的直径等于12故选:D【点睛】本题考查的圆周角定理,根据题意作

7、出辅助线,构造出等边三角形是解答此题的关键3、C【分析】先根据圆周角定理求出AOB的度数,再由等腰三角形的性质即可得出结论【详解】ACB=50,AOB=100,OA=OB,OAB=OBA= 40,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半4、D【分析】根据圆内接四边形的性质求出B的度数,根据圆周角定理计算即可【详解】解:四边形ABCD内接于O,B+ADC=180,ADC=130,B=50,由圆周角定理得,AOC=2B=100,故选:D【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关

8、键5、B【分析】设ADC=,ABC=,由菱形的性质与圆周角定理可得 ,求出即可解决问题【详解】解:设ADC=,ABC=; 四边形ABCO是菱形, ABC=AOC; ADC=; 四边形为圆的内接四边形,+=180, , 解得:=120,=60,则ADC=60, 故选:B【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.6、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角

9、形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解

10、题的关键,也是本题的难点7、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解【详解】解:连接CD,如图所示:点D是AB的中点,在RtACB中,由勾股定理可得;故选D【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键8、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1)故选:C【点睛】本题考查

11、关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形9、B【详解】解:A是轴对称图形,不是中心对称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要

12、寻找对称中心,旋转180度后与原图重合10、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80得到OCD, A的度数为110,D的度数为40, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.二、填空题1、【分析】根据旋转找出规律后再确定坐标【详解】正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60,每6次翻转为一个循环组循环,经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,翻转前进的距离为:,如图,过点B作BGx于G,则

13、BAG=60,点B的坐标为故答案为:【点睛】题考查旋转的性质与正多边形,由题意找出规律是解题的关键2、【分析】关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B坐标【详解】解:由题意知点B横坐标为;纵坐标为;故答案为:【点睛】本题考查了关于原点对称的点的坐标知识解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数3、45【分析】连接OC,OD,根据同底等高可知SACD=SOCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解【详解】解:连接OC,OD,直径AB=30,OC=OD=,CDAB,SACD=SOCD,长为6,阴影部分的面积为S阴影

14、=S扇形OCD=,故答案为:45【点睛】本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键4、9cm【分析】由弧长公式即可求得弧的半径【详解】故答案为:9cm【点睛】本题考查了扇形的弧长公式,善于对弧长公式变形是关键5、5【分析】设O的半径为r,则OA=r,OD=r-2,先由垂径定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可【详解】解:设O的半径为r,则OC=OA=r,OE=OC-CE=r-2,OCAB,AB=8,AE=BE=AB=4,在RtOAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即O的半径长为5,

15、故答案为:5【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了勾股定理三、解答题1、(1)作图见解析(2)是的切线,理由见解析【分析】(1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点(2)如图2所示,连接,由题意可知,;在四边形中,求出,得出,由于是半径,故有是的切线(1)解:如图1所示(2)解:是的切线如图2所示,连接由题意可知,在四边形中又是半径是的切线【点睛】本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点解题的关键在于将知识综合灵活运用2、(1)见解析

16、(2)3,2【分析】(1)由等腰三角形的性质与已知条件得出,OCA=DCB,由圆周角定理可得ACB=90,进而得到OCD=90,即可得出结论;(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在RtOCD中,根据勾股定理求出x=1,即O的半径为3,由平行线的性质得到OCB=EOC,在RtOCE中,可求得tanEOC=2,即tanOCB=2(1)证明:OAOC,OACOCA,DCBOAC, OCADCB, AB是O的直径,ACB90,OCA+OCB90,DCB+OCB90,即OCD90,OCDC, OC是O的半径,CD是O的切线;(2)OEBC,CD

17、=4,CE=6,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,OCDC,OCD是直角三角形,在RtOCD中,OC2+CD2=OD2,(3x)2+42=(5x)2,解得,x=1,OC=3x=3,即O的半径为3,BCOE,OCB=EOC,在RtOCE中,tanEOC=,tanOCB=tanEOC=2【点睛】本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键3、(1)见解析;(2)6【分析】(1)连接OC,根据CE是O的切线,可得OCE,根据圆周角定理,可得AOC=,从

18、而得到AOC+OCE,即可求证;(2)过点A作AFEC交EC于点F,由AOC,OAOC,可得OAC,从而得到BAD,再由ADEC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解【详解】证明:(1)连接OC,CE是O的切线,OCE,ABC,AOC2ABC,AOC+OCE,ADEC;(2)解:过点A作AFEC交EC于点F,AOC,OAOC,OAC,BAC,BAD,ADEC,OCE,AOC,AFC=90,四边形OAFC是矩形,OAOC,四边形OAFC是正方形,在RtAFE中,AE=2AF=6【点睛】本题主要考查了圆周角定理,切线的性质,直角三角形的性质,

19、正方形的判定和性质,熟练掌握相关知识点是解题的关键4、见解析【分析】由题意画图,再根据圆周角定理的推论即可得证结论【详解】证明:根据题意作图如下:BD是圆周角ABC的角平分线,ABD=CBD,AD=CD【点睛】本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键5、(1)证明见解析;(2)证明见解析;(3)证明见解析【分析】(1)在和中,故可证明三角形相似(2)由得出(3)法一:由题意知,由得,有,所以可得,又因为可得,;由于,进而说明,得出平分法二:通过得出F、D、C、E四点共圆,由得,从而得出平分【详解】解:(1)证明在和中 (2)证明:在和中 (3)证明:又D是中点,平分法二:F、D、C、E四点共圆又D是点,平分【点睛】本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知识点解题的关键与难点在于角度的转化解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁