知识点详解人教版八年级数学下册第十九章-一次函数专题测评试题.docx

上传人:可****阿 文档编号:32554767 上传时间:2022-08-09 格式:DOCX 页数:27 大小:308.41KB
返回 下载 相关 举报
知识点详解人教版八年级数学下册第十九章-一次函数专题测评试题.docx_第1页
第1页 / 共27页
知识点详解人教版八年级数学下册第十九章-一次函数专题测评试题.docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《知识点详解人教版八年级数学下册第十九章-一次函数专题测评试题.docx》由会员分享,可在线阅读,更多相关《知识点详解人教版八年级数学下册第十九章-一次函数专题测评试题.docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版八年级数学下册第十九章-一次函数专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一次函数y=kx+1的图象经过点A(1,3)和B(a,-1),则的值为( )A1B2CD2、函数yx1的图

2、象经过()A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限3、已知正比例函数ykx的函数值y随x的增大而减小,则一次函数ykxk的图象大致是()ABCD4、一次函数yx2的图象与x轴,y轴分别交于A、B两点,以AB为腰,BAC90,在第一象限作等腰RtABC,则直线BC的解析式为()ABCD5、下列函数中,为一次函数的是( )ABCD6、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()Ay=2x+3By=x3Cy=x+3Dy=3x7、笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,

3、1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示给出下列说法:A,B港口相距400km;B,C港口相距300km;甲船的速度为100km/h;乙船出发4h时,两船相距220km,其中正确的个数是( )A1B2C3D48、已知一次函数ykx+b的图象如图,则不等式ax+b2的解集为()Ax1Bx1Cx0Dx09、关于函数有下列结论,其中正确的是( )A图象经过点B若、在图象上,则C当时,D图象向上平移1个单位长度得解析式为10、一次函数yx2的图象不经过( )A第一象

4、限B第二象限C第三象限D第四象限第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(1)写出一个一次函数的表达式,使得它经过点(1,3):_(2)写出一个一次函数的表达式,使得y随x的增大而减小,且经过第一象限:_2、如图,直线交x轴于点A,交y轴于点B,点A1:坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以点A为圆心,AB1长为半径画弧交x轴于点A2;过点A2作x轴的垂线交直线于点B2,以点A为圆心,AB2长为半径画弧交x轴于点A3;按此做法进行下去,点B2021的坐标为_3、一次函数y=kx+b(k0)的图象是_,它可以看作由直线y=kx(k0)平移|b|个

5、单位而得到(当b0时,向_平移,当b0的解集是_;不等式-2x-60的解集是_(3)求出函数图象与坐标轴的两个交点之间的距离-参考答案-一、单选题1、C【解析】【分析】代入A点坐标求一次函数解析式,再根据B点纵坐标代入解析式即可求解【详解】解:一次函数y=kx+1的图象经过点A(1,3),解得k=2,一次函数解析式为:,B(a,-1)在一次函数上,解得,故选:C【点睛】本题主要考查了一次函数的基本概念以及基本性质,解本题的要点在于求出直线的解析式,从而得到答案2、D【解析】【分析】根据一次函数的图象特点即可得【详解】解:一次函数的一次项系数为,常数项为,此函数的图象经过第一、三、四象限,故选:

6、D【点睛】本题考查了一次函数的图象,熟练掌握一次函数的图象特点是解题关键3、C【解析】【分析】由题意易得k0,然后根据一次函数图象与性质可进行排除选项【详解】解:正比例函数ykx(k0)函数值随x的增大而减小,k0,k0,一次函数ykxk的图象经过一、二、四象限;故选:C【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键4、D【解析】【分析】由题意易得B的坐标是(0,2),A的坐标是(5,0),作CEx轴于点E,则有ACEBAO,然后可得ABOCAE,进而可得C的坐标是(7,5),设直线BC的解析式是ykxb,最后利用待定系数法可求解【详解】解:一次函数yx2中

7、,令x0得:y2;令y0,解得x5,B的坐标是(0,2),A的坐标是(5,0)若BAC90,如图1,作CEx轴于点E,BAC90,OABCAE90,又CAEACE90,ACEBAO在ABO与CAE中,ABOCAE(AAS),OBAE2,OACE5,OEOAAE257则C的坐标是(7,5)设直线BC的解析式是ykxb,根据题意得:,解得,直线BC的解析式是yx2故选:D【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键5、D【解析】【分析】根据一次函数的定义即可求解【详解】A.不是一次函数,B.不是一次函数,C.不是一次函数,D.是一次函数故选D【点睛】一次函数的

8、定义一般地,形如y=kx+b(k,b是常数,k0)的函数,叫做一次函数当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数6、D【解析】【分析】先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式【详解】解:由图可知:A(0,3),xB=1点B在直线y=2x上,yB=21=2,点B的坐标为(1,2),设直线AB的解析式为y=kx+b,则有:,解得:,直线AB的解析式为y=-x+3;故选:D【点睛】本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键7、B【解析】【分析】根据图象可知A、B港口相距400km,从

9、而可以判断;根据甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地甲船的速度是乙船的1.25倍,可以计算出B、C港口间的距离,从而可以判断;根据图象可知甲船4个小时行驶了400km,可以求得甲船的速度,从而可以判断;根据题意和图象可以计算出乙出发4h时两船相距的距离,从而可以判断【详解】解:由题意和图象可知, A、B港口相距400km,故正确;甲船的速度是乙船的1.25倍, 乙船的速度为:1001.25=80(km/h), 乙船的速度为80km/h, 40080=(400+)100-1, 解得:=200km, 故错误; 甲船4个小时行驶了

10、400km, 甲船的速度为:4004=100(km/h), 故正确; 乙出发4h时两船相距的距离是:480+(4+1-4)100=420(km), 故错误故选B【点睛】本题考查从函数图象中获取信息,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题8、D【解析】【分析】观察函数图形得到当x0时,一次函数yax+b的函数值不小于2,即ax+b2解:根据题意得当x0时,ax+b2,【详解】即不等式ax+b2的解集为x0故选:D【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数yaxb的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是

11、确定直线ykxb在x轴上(或下)方部分所有的点的横坐标所构成的集合9、D【解析】【分析】根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项【详解】解:A、当x=-1时,则有y=-2(-1)-2=0,故点不在一次函数的图象上;不符合题意;B、,y随x的增大而减小,若、在图象上,则有,即,故不符合题意;C、当y=0时,则有-2x-2=0,解得x=-1,所以当x-1时,y0,则当时,故不符合题意;D、图象向上平移1个单位长度得解析式为,正确,故符合题意;故选D【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键10、A【解析】【分析】因为k10,b20,根据一

12、次函数ykx+b(k0)的性质得到图象经过第二、四象限,图象与y轴的交点在x轴下方,于是可判断一次函数yx2的图象不经过第一象限【详解】解:一次函数yx2中k10,图象经过第二、四象限;又b20,一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,一次函数yx2的图象不经过第一象限故选:A【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系;k0时,直线必经过一、三象限;k0时,直线必经过二、四象限;b0时,直线与y轴正半轴相交;b=0时,直线过原点;b0时,直线与y轴负半轴相交二、填空题1、 y=2

13、x+1(答案不唯一) y=x+3(答案不唯一)【解析】【分析】(1)根据要求写即可,只要写出的函数解析式过点(1,3)均可;(2)由题意及一次函数的性质,k0,满足这两个条件的一次函数解析式均可【详解】(1)y=2x+1当x=1时,y=2+1=3即所写的函数解析式满足条件故答案为:y=2x+1(答案不唯一)(2)y=x+3故答案为:y=x+3(答案不唯一)【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是关键,注意这里的答案都不唯一2、【解析】【分析】根据题意可以写出A和B的前几个点的坐标,从而可以发现各点的变化规律,从而可以写出点B2021的坐标【详解】解:直线,令,则,A

14、1(1,0),轴,将代入得点B1坐标为(1,2),在中,同理,点B2的坐标为点A3坐标为,点B3的坐标为,点Bn的坐标为当n=2021时,点B2021的坐标为,即故答案为:【点睛】本题考查一次函数图象上点的坐标特征、规律型,勾股定理,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答3、 一条直线 上 下【解析】【分析】根据一次函数的性质填写即可【详解】解:函数为一次函数,一次函数y=kx+b(k0)的图象是一条直线,它可以看作由直线y=kx(k0)平移|b|个单位而得到(当b0时,向上平移,当b0时,向下平移)故答案为:一条直线 上 下【点睛】本题考查了一次函数的性质,做题的关

15、键是牢记性质准确填写4、x0【解析】【分析】由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可【详解】解:函数的定义域是:x0故答案为:x0【点睛】本题考查求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负5、 30 3、10、13【解析】【分析】(1)根据路程与时间求出乙登山速度,再求2分钟路程即可;(2)先求甲速度,再求出乙提速后得速度,再用待定系数法求AB与CD解析式,根据解析式组成方程组求出相遇时间,利用两函数之差=70建构方程求出相遇后

16、相差70米的时间或乙到终点相距70米的时间即可【详解】解:(1)内乙的速度为151=15m/min,;(2)甲登山上升速度是(m/min),乙提速后速度是(m/min)(min)设甲函数表达式为,把(0,100),(20,300)代入,得解得.设乙提速前的函数表达式为.把(1,15)代入,得,设乙提速后的函数表达式为,把(2,30),(11,300)代入,得解得,当时,解得;当时,解得;当时,解得综上所述:登山3min、10min、13min时,他们俩距离地面的高度差为70m【点睛】本题考查一次函数图像获取信息,待定系数法求函数解析式,方程组解法,利用两者间距离建构方程,掌握一次函数图像获取信

17、息,待定系数法求函数解析式,方程组解法,利用两者间距离建构方程是解题关键三、解答题1、(1)y=-12x+3;(2)(-32,94);点M的坐标为(322,0)或(-322,0);点F的坐标(910,0)【解析】【分析】(1)先确定出点B坐标和点A坐标,进而求出点C坐标,最后用待定系数法求出直线BC解析式;(2)设点M(m,0),则点P(m,12m+3),则OM=-m,由B(0,3),C(6,0),则OB=3,OC=6,MC=6-m,再由勾股定理得BM2+BC2=MC2,BM2=OM2+OB2,BC2=OC2+OB2则m2+32+62+32=6-m2,由此求解即可;设点M(n,0), P(n,

18、12n+3),点Q在直线BC:y=-12x+3上,Q(n,-12n+3),PQ=|12n+3-(-12n+3)|=|n|,SPQB=12|n|n|=12n2=94,进行求解即可;过点F作FHFK交CK于H,过点H作HEx轴于E,根据CKF=45,KFH是等腰直角三角形,再证KOFFEH(AAS),得出EH=OF,EF=OK,根据点K为线段OB的中点,OB=6,求出K(0,32),设F(x,0),则OE=x+32, 待定系数法求直线CK的解析式为y=-14x+32,点H在CK上,H(x+32,x),代入得方程x=-14(x+32)+32解方程即可【详解】(1)对于y=12x+3,令x=0,y=3

19、,B(0,3),令y=0,12x+3=0,x=-6,A(-6,0),点C与点A关于y轴对称,C(6,0),设直线BC的解析式为y=kx+b,6k+b=0b=3,k=-12b=3,直线BC的解析式为y=-12x+3; (2)设点M(m,0),P(m,12m+3),B(0,3),C(6,0),BC2=OB2+OC2=9+36=45,BM2=OM2+OB2=m2+9,MC2=(6-m)2,MBC=90,BMC是直角三角形,BM2+BC2=MC2,m2+9+45=(6-m)2,m=-32,P-32,94,故答案为:-32,94; 设点M(n,0),点P在直线AB:y=12x+3上,P(n,12n+3)

20、,点Q在直线BC:y=-12x+3上,Q(n,-12n+3),PQ=|12n+3-(-12n+3)|=|n|,PQB的面积为94,SPQB=12|n|n|=12n2=94,n=322,M(322,0)或(-322,0); 过点F作FHFK交CK于H,过点H作HEx轴于E,CKF=45,KFH是等腰直角三角形,KF=FH,KFO+HFE=90,KFO+FKO=90,HFE=FKO,KOF=FEH=90,KOFFEH(AAS),EH=OF,EF=OK,点K为线段OB的中点,OB=6,EF=OK=32,K(0,32),设F(x,0),则OE=x+32,EH=OF=x,则H(x+32,x),C(6,0

21、),K(0,32),设直线CK的解析式为y=kx+b,6k+b=0b=32,解得:k=-14b=32,直线CK的解析式为y=-14x+32,点H在CK上,H(x+32,x),x=-14(x+32)+32,解得:x=910,点F的坐标为(910,0)【点睛】本题主要考查了坐标与图形,一次函数与几何综合,全等三角形的性质与判定,等腰直角三角形的性质,解题的关键在于能够熟练掌握待定系数法求一次函数解析式2、(1)此次去了7个成人,3个儿童;(2)W1,W2与a之间的函数关系式为:W116233150a,W216128129a,当儿童人数为5人时,选择两家滑雪场所需的费用都一样【解析】【分析】(1)设

22、此次去了x个成人,(10x)个儿童,根据成人的票费与儿童的票费和等于总票费2293列出方程即可;(2)先根据题意分别列出W1,W2与a之间的函数关系式,然后再令W1W2建立方程即可【详解】解:(1)设此次去了x个成人,(10x)个儿童,由题意得:139x+268(10x)2293,解得:x7,当x7时,10x3,答:此次去了7个成人,3个儿童;(2)W1118a+268(21a)+215+2150016233150a,W2139a+268(21a)+2150016128129a,当W1W2时,16233150a16128129a,解得:a5,当儿童人数为5人时,选择两家滑雪场所需的费用都一样,

23、答:W1,W2与a之间的函数关系式为:W116233150a,W216128129a,当儿童人数为5人时,选择两家滑雪场所需的费用都一样【点睛】本题考查了一次函数的应用,根据题目的已知条件找到等量关系是解题的关键3、若商场投入资金为20万元,两种出售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多;若商场投入资金多于20万元,下月初出售获利较多【解析】【分析】先求出月初销售方案获利y1元=本月初获利本金获利百分比+下月初获利(本金+获利)获利百分比;下月初出售方案获利本金获利百分比-支付仓储费,让两种获利相等列方程,解方程即可【详解】解:设如果商场本月初出售,下月初可获利y1元,则

24、y110%x(110%)x10%0.1x0.11x0.21x,设如果商场下月初出售,可获利y2元,则y225%x8 0000.25x8 000,当y1y2时,0.21x0.25x8 000,解得x200 000,所以若商场投入资金为20万元,两种出售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多;若商场投入资金多于20万元,下月初出售获利较多【点睛】本题考查列一次函数关系式解销售获利问题应用,掌握列一出函数解析式的方法,方案设计中分类讨论方法是解题关键4、 (1)见解析;(2)两个变量是:传播的速度和温度,温度是自变量;(3) 352米/秒; (4) y=331+35x【解析】【

25、分析】(1)根据题中数据列出表格(2)找出题中的两个变量(3)根据传播速度与温度的变化规律进而得出答案(4)结合(3)中发现得出两个变量之间的关系【详解】(1)列表如下:x()051015202530y(米/秒)331334337340343346349(2)两个变量是:传播的速度和温度,温度是自变量(3) 根据表格中音速y(米/秒)随着气温x()的变化规律可知,当气温再增加5,音速就相应增加3米/秒,即为349+3=352(米/秒),当气温是35时,估计音速y可能是:352米/秒(4)根据表格中数据可得出:温度每升高5,传播的速度增加3,当x=0时,y=331,故两个变量之间的关系为: y=

26、331+35x【点睛】本题考查了变量与常量以及函数表示方法,理解两个变量的变化规律是得出函数关系式的关键5、(1)见解析;(2)x-3;(3)BC=35【解析】【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,一次函数y=-2x-6与x轴交点B的坐标为(-3,0)描点连线画出函数图象,如图所示(2)观察图象可知:当x-3时,一次函数y=-2x-6的图象在x轴下方不等式-2x-60的解集是x-3;不等式-2x-6-3故答案是:x-3,x-3;(3)B(-3,0),C(0,-6),OB=3,OC=6,BC=OB2+OC2=35【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁