2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向测评试卷(精选含答案).docx

上传人:可****阿 文档编号:32553821 上传时间:2022-08-09 格式:DOCX 页数:34 大小:1.16MB
返回 下载 相关 举报
2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向测评试卷(精选含答案).docx_第1页
第1页 / 共34页
2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向测评试卷(精选含答案).docx_第2页
第2页 / 共34页
点击查看更多>>
资源描述

《2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向测评试卷(精选含答案).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向测评试卷(精选含答案).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、BP是ABC的平分线,CP是ACB的邻补角的平分线,ABP=20,ACP=50,则P=( )A30B40C50

2、D602、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D123、如图,ABC中,ABC与ACB的平分线交于点F,过点F作DEBC交AB于点D,交AC于点E,那么下列结论:BDF是等腰三角形;DEBD+CE;若A50,则BFC115;DFEF其中正确的有( )A1个B2个C3个D4个4、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将BEF对折,点B落在直线EF上的点B处,得折痕EM,将AEF对折,点A落在直线EF上的点A处,得折痕EN,则图中与BME互余的角有()A2个B3个C4个D5个5、如图,在ABC中,

3、BD平分ABC,C2CDB,AB12,CD3,则ABC的周长为()A21B24C27D306、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A3cmB4cmC7cmD10cm7、有下列说法:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;等腰三角形一腰上的高与底边的夹角与顶角互余;等腰三角形顶角的平分线是它的对称轴;等腰三角形两腰上的中线相等其中正确的说法有( )个A1B2C3D48、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,添加下列条件不能判定的是( )ABCD9、如图,在中,AD是角平分线,且,若,则的度数是( )A45B50C52D5

4、810、如图,在中,、分别平分、,过点作直线平行于,分别交、于点、,当大小变化时,线段和的大小关系是ABCD不能确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,AB平分DAC,ABBC,垂足为B,若ADC与ACB互补,BC5,则CD的长为_2、如图,为ABC的中线,为的中线,为的中线,按此规律,为的中线若ABC的面积为8,则的面积为_3、如图,在RtABC中,ACB90,BAC30,BC6,将ABC绕点C顺时针旋转30得到ABC,A、B分别与A、B对应,CA交AB于点M,则CM的长为 _4、如图,把ABC绕点C顺时针旋转某个角度得到,A30,170,

5、则旋转角的度数为_5、如图,线段,垂足为点,线段分别交、于点,连结,则的度数为_三、解答题(10小题,每小题5分,共计50分)1、如图,在ABC中,BAC90,ABAC,射线AE交BC于点P,BAE15;过点C作CDAE于点D,连接BE,过点E作EFBC交DC的延长线于点F(1)求F的度数;(2)若ABE75,求证:BECF2、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一如图1所示的“三等分角仪”是利用阿基米德原理做出的这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OAOCPCAO

6、B为要三等分的任意角则利用“三等分角仪”可以得到APB AOB我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明已知:如图2,点O,C分别在APB的边PB,PA上,且OAOCPC求证:APB AOB3、如图,RtACB中,ACB90,ACBC,E点为射线CB上一动点,连结AE,作AFAE且AFAE(1)如图1,过F点作FDAC交AC于D点,求证:FDBC;(2)如图2,连结BF交AC于G点,若AG3,CG1,求证:E点为BC中点(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC4,BE3,则 (直接写出结果)4、已知:如图,在ABC中,ABAC,点D、E分别在边BC,AC上,

7、ADAE(1)若BAD30,则EDC ;若EDC20,则BAD (2)设BADx,EDCy,写出y与x之间的关系式,并给出证明5、如图,E为BC中点,DE平分(1)求证:平分;(2)求证:;(3)求证:6、如图,在中,是的平分线,点在边上,且()求证:;()若,求的大小7、如图,ABC中,ABAC,D为BC边的中点,AFAD,垂足为A求证:128、中,CD平分,点E是BC上一动点,连接AE交CD于点D(1)如图1,若,AE平分,则的度数为_;(2)如图2,若,则的度数为_;(3)如图3,在BC的右侧过点C作,交AE延长线于点F,且,试判断AB与CF的位置关系,并证明你的结论9、如图,ABAD,

8、ACAE,BCDE,点E在BC上(1)求证:EACBAD;(2)若EAC42,求DEB的度数10、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC(1)求证DOBAOC;(2)求CEB的大小;(3)如图2,OAB固定不动,保持OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求CEB的大小-参考答案-一、单选题1、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出P的度数【详解】BP是ABC中ABC的平分线,CP是ACB的外角的平分线,ABP=CBP=

9、20,ACP=MCP=50,PCM是BCP的外角,P=PCMCBP=5020=30,故选:A【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和2、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型3、C【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性

10、质逐个判定即可解答【详解】解:BF是AB的角平分线,DBFCBF,DEBC,DFBCBF,DBFDFB,BDDF,BDF是等腰三角形;故正确;同理,EFCE,DEDF+EFBD+CE,故正确;A50,ABC+ACB130,BF平分ABC,CF平分ACB,FBC+FCB(ABC+ACB)65,BFC18065115,故正确;当ABC为等腰三角形时,DFEF,但ABC不一定是等腰三角形,DF不一定等于EF,故错误故选:C【点睛】本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键4、C【分析】先由翻折的性质得到

11、AEN=AEN,BEM=BEM,从而可知NEM=180=90,然后根据余角的定义找出BME的余角即可【详解】解:由翻折的性质可知:AEN=AEN,BEM=BEMNEM=AEN+BEM=AEA+BEB=180=90由翻折的性质可知:MBE=B=90由直角三角形两锐角互余可知:BME的一个余角是BEMBEM=BEM,BEM也是BME的一个余角NBF+BEM=90,NEF=BMEANE、ANE是BME的余角综上所述,BME的余角有ANE、ANE、BEM、BEM故选:C【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键5、C【分析】根据题意在AB上截取BE=BC,由“SAS”可

12、证CBDEBD,可得CDB=BDE,C=DEB,可证ADE=AED,可得AD=AE,进而即可求解【详解】解:如图,在AB上截取BEBC,连接DE,BD平分ABC,ABDCBD,在CBD和EBD中,CBDEBD(SAS),CDBBDE,CDEB,C2CDB,CDEDEB,ADEAED,ADAE,ABC的周长AD+AE+BE+BC+CDAB+AB+CD27,故选:C【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键6、C【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可【详解】解:设三角形

13、的第三边是xcm则7-3x7+3即4x10,四个选项中,只有选项C符合题意,故选:C【点睛】本题主要考查了三角形三边关系的应用此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可7、B【分析】根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可【详解】解:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;等腰三角形的顶角平分线在它的对称轴上,原说法错误;等腰三角形两腰上的中线相等,说法正确综上,正确的有,共2个,故选:B【点睛】本题考查了轴对称的性质及等腰三角形的性质,掌握轴对

14、称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键8、A【分析】根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可【详解】解:A. ,不能根据SSA证明三角形全等,故该选项符合题意;B. ,故能判定,不符合题意;C. ,,故能判定,不符合题意;D.,故能判定,不符合题意;故选A【点睛】本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键9、A【分析】根据角平分线性质求出DCA,再根据等腰三角形的性质和三角形的内角和定理求解C和B即可【详解】解:AD是角平分线,DCA=30,AD=AC,C=(180DCA)2=75,B=180BACC=1806

15、075=45,故选:A【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键10、C【分析】由平行线的性质和角平分线的定义可得,则,同理可得,则,可得答案【详解】解:,平分,同理,即故选:C【点睛】本题主要考查了等腰三角形的判定,平行线的性质,角平分线的定义,熟练掌握等腰三角形的判定定理,平行线的性质定理,角平分线的定义是解题的关键二、填空题1、10【分析】构造,再证得,求得EB=BC,再通过等量代换、等角的补角相等求得E=CDE,则CE=2BC=10【详解】解:延长AD.和CB交于点E.AB平分DACEAB=CAB又ABE=ABC又AB=A

16、BBC=EB=5,E=ACB, 又ACB=CDEE=CDE.CD=CE又CE=2BC=10CD=10故答案为:10【点睛】本题考查了全等三角形的性质和判定,等角的补角相等,能根据全等三角形的性质找到角与角之间的关系是解答此题的关键2、【分析】根据三角形的中线性质,可得的面积=,的面积=,进而即可得到答案【详解】由题意得:的面积=,的面积=,的面积=故答案是:【点睛】本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键3、【分析】根据旋转的性质可得,所以,由题意可得:,为等边三角形,即可求解【详解】解:,由旋转的性质可得,为等边三角形,故答案为:【点睛】此题考查了直角

17、三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的关键是灵活掌握相关基本性质进行求解4、#【分析】由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.【详解】解: 把ABC绕点C顺时针旋转某个角度得到,A30, 170, 故答案为:【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.5、270【分析】由题意易得,然后根据三角形内角和定理可进行求解【详解】解:,且,同理可得:,故答案为270【点睛】本题主要考查三角形内角和、垂直的定义及对顶角相等,熟练掌握三角形内角和、垂直的定义及对顶角相等是解题的关键三、解答题1、(1);(2)证明见详解【分析】

18、(1)根据三角形内角和及等腰三角形的性质可得,由各角之间的关系及三角形内角和定理可得,最后由平行线的性质即可得出;(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明【详解】解:(1),;(2),由(1)可得,(内错角相等,两直线平行)【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键2、见解析【分析】由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明【详解】解:,为等腰三角形,由外角的性质得:,再由外角的性质得:,【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的

19、思想进行求解3、(1)证明见解析;(2)证明见解析;(3)或【分析】(1)证明AFDEAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;(2)作FDAC于D,证明FDGBCG,得到DG=CG,求出CE,CB的长,得到答案;(3)过F作FDAG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可【详解】(1)证明:FDAC,FDA=90,DFA+DAF=90,同理,CAE+DAF=90,DFA=CAE,在AFD和EAC中,AFDEAC(AAS),DF=AC,AC=BC,FD=BC;(2)作FDAC于D,由(1)得,FD=AC=BC,AD=CE,在FDG和B

20、CG中,FDGBCG(AAS),DG=CG=1,AD=2,CE=2,BC=AC=AG+CG=4,E点为BC中点;(3)当点E在CB的延长线上时,过F作FDAG的延长线交于点D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:ADFECA,GDFGCB,CG=GD,AD=CE=7,CG=DG=1.5,AG=CG+AC=5.5,同理,当点E在线段BC上时,AG= AC -CG+=2.5,故答案为:或【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键4、(1)15,40;(2)yx,见解析【分析】(1)设EDCm,则BCn,根据ADEAEDm+n,AD

21、CB+BAD即可列出方程,从而求解(2)设BADx,EDCy,根据等腰三角形的性质可得BC,ADEAEDC+EDCB+y,由ADCB+BADADE+EDC即可得B+xB+y+y,从而求解【详解】解:(1)设EDCm,BCn,AEDEDC+Cm+n,又ADAE,ADEAEDm+n,则ADCADE+EDC2m+n,又ADCB+BAD,BAD2m,2m+nn+30,解得m15,EDC的度数是15;若EDC20,则BAD2m22040故答案是:15;40;(2)y与x之间的关系式为yx,证明:设BADx,EDCy,ABAC,ADAE,BC,ADEAED,AEDC+EDCB+y,ADCB+BADADE+

22、EDC,B+xB+y+y,2yx,yx【点睛】本题主要考查了等腰三角形的性质、三角形外角的性质以及一元一次方程的应用,灵活运用等腰三角形的性质成为解答本题的关键5、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE交AB延长线于F,由B=C=90,推出ABCD,则CDE=F,再由DE平分ADC,即可推出ADF=F,得到AD=AF,即ADF是等腰三角形,然后证明CDEBFE得到DE=FE,即E是DF的中点,即可证明AE平分BAD;(2)由(1)即可用三线合一定理证明;(3)由CDEBFE,得到CD=BF,则AD=AF=AB+BF=AB+CD【详解】解:(1)如图所示,延长DE交AB延

23、长线于F,B=C=90,ABCD,CDE=F,DE平分ADC,CDE=ADE,ADF=F,AD=AF,ADF是等腰三角形,E是BC的中点,CE=BE,CDEBFE(AAS),DE=FE,E是DF的中点,AE平分BAD;(2)由(1)得ADF是等腰三角形,AD=AF,E是DF的中点,AEDE;(3)CDEBFE,CD=BF,AD=AF=AB+BF=AB+CD【点睛】本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键6、()见解析;()【分析】()由CD是的平分线得出,由得出从而得出,由平行线的判断即可得证;()由三角形内角和求出,由角平分线

24、得出,由三角形内角和求出即可得出答案【详解】()CD是的平分线,;(),【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键7、见详解【分析】根据等腰三角形三合一性质以及等边对等角性质得出ADBC,B=C,根据AFAD,利用在同一平面内垂直同一直线的两直线平行得出AFBC,利用平行线性质得出1=B,2=C即可【详解】证明:ABC中,ABAC,D为BC边的中点,ADBC,B=C,AFAD,AFBC,1=B,2=C,12【点睛】本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键8、(1)40;(2)10;(3)ABCF,理由见解析【分

25、析】(1)根据三角形的角和定理和角平分线的定义可求得BAC+ACB=140即可求解;(2)根据三角形的外角性质求得B+BAE=47即可求解;(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到FCG=2F,再根据角平分线的定义和等角的余角相等得到BCF=2F,则有B=BCF,根据平行线在判定即可得出结论【详解】解:(1)ADC=110,DAC+DCA=180110=70,AE平分BAC,CD平分ACB,BAC=2DAC,ACB=2DCA,BAC+ACB=2(DAC+DCA)=140,B=180(BAC+ACB)=180140=40,故答案为:40;(2)ADC=DCE+DEC=100

26、,DCE=53,DEC=10053=47,B+BAE=DEC=47,BBAE=27,BAE=10,故答案为:10;(3)ABCF,理由为:如图,延长AC到G,AC=CF,F=FAC,FCG=F+FAC=2F,CFCD,BCF+BCD=90,FCG+ACD=90,CD平分ACB,BCD=ACD,BCF=FCG=2F,B=2F,B=BCF,ABCF【点睛】本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键9、(1)见解析;(2)42【分析】(1)利用边边边证得ABCADE,可得BACDAE,即可求证

27、;(2)根据等腰三角形的性质,可得AECC69,再由ABCADE,可得AEDC69, 即可求解【详解】(1)证明:ABAD,ACAE,BCDE,ABCADE BACDAE BACBAEDAEBAE即EACBAD; (2)解:ACAE,EAC=42,AECC (180EAC) (18042)69ABCADE,AEDC69, DEB180AEDC180696942【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键10、(1)见详解;(2)120;(2)120【分析】(1)如图1,根据等边三角形的性质得到OD=OC=O

28、A=OB,COD=AOB=60,则利用根据“SAS”判断AOCBOD;(2)利用AOCBOD得到CAO=DBO,然后根据三角形内角和可得到AEB=AOB=60,即可求出答案;(3)如图2,与(1)的方法一样可证明AOCBOD;则CAO=DBO,然后根据三角形内角和可求出AEB=AOB=60,即可得到答案【详解】(1)证明:如图1,ODC和OAB都是等边三角形,OD=OC=OA=OB,COD=AOB=60,BOD=AOC=120,在AOC和BOD中AOCBOD;(2)解:AOCBOD,CAO=DBO,1=2,AEB=AOB=60,;(3)解:如图2,ODC和OAB都是等边三角形, OD=OC=OA=OB,COD=AOB=60,AOB+BOC=COD+BOC,即AOC=BOD,在AOC和BOD中AOCBOD;CAO=DBO,1=2,AEB=AOB=60,;即CEB的大小不变【点睛】本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁