2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向训练试卷(含答案详解).docx

上传人:知****量 文档编号:28181413 上传时间:2022-07-26 格式:DOCX 页数:36 大小:866.47KB
返回 下载 相关 举报
2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向训练试卷(含答案详解).docx_第1页
第1页 / 共36页
2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向训练试卷(含答案详解).docx_第2页
第2页 / 共36页
点击查看更多>>
资源描述

《2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向训练试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向训练试卷(含答案详解).docx(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将BEF对折,点B落在直线EF上的点B处,得折

2、痕EM,将AEF对折,点A落在直线EF上的点A处,得折痕EN,则图中与BME互余的角有()A2个B3个C4个D5个2、如图,ABC中,ABC45,CDAB于D,BE平分ABC,且BEAC于E,与CD相交于点F,DHBC于H,交BE于G,下列结论中正确的是( )BCD为等腰三角形;BFAC;CEBF;BHCEABCD3、如图,A,DBC3DBA,DCB3DCA,则BDC的大小为( )ABCD4、以下长度的三条线段,能组成三角形的是( )A2,3,5B4,4,8C3,4.8,7D3,5,95、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形他的依据是(

3、)ABCD6、如图,将OAB绕点O逆时针旋转80得到OCD,若A的度数为110,D的度数为40,则AOD的度数是( )A50B60C40D307、如图,已知,要使,添加的条件不正确的是( )ABCD8、如图,ACBC,C,DEAC于E,FDAB于D,则EDF等于()AB90C90D18029、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,则( )A45B60C35D4010、下列长度的三条线段能组成三角形的是( )A3,4,7B3,4,8C3,4,5D3,3,7第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在等边三角形中,是边的高线,延长至点,使,则B

4、E的长为_2、如图,已知,请添加一个条件,使得,则添加的条件可以为_(只填写一个即可)3、如图,点D是的平分线OC上一点,过点D作交射线OA于点E,则线段DE与OE的数量关系为:DE_OE(填“”或“”或“”)4、如图,在等边ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点若AD=6,则EP+CP的最小值为_5、如图,ACB90,ACBC,ADCD于点D,BECD于点E,有下面四个结论: CADBCE; ABEBAD; ABCD; CDADDE其中所有正确结论的序号是_三、解答题(10小题,每小题5分,共计50分)1、如图,点D,E在ABC的边BC上,ABAC,ADAE,求证:B

5、DCE2、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,交于点Q求证:同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由(2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由3、如图所示,四边形的对角线、相交于点,已知,求证:(1);(2)4、如图,是等边三角形,分别交AB,AC于点D,E(1)求证:是等边三角形;(2)点F在线段DE上,点G在外,求证:5、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DEAB,交AC于点E求证:AED是

6、等腰三角形6、如图,在等边三角形ABC中,点P为ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60得到 ,连接 (1)用等式表示 与CP的数量关系,并证明;(2)当BPC120时, 直接写出 的度数为 ;若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明7、已知,在ABC中,BAC30,点D在射线BC上,连接AD,CAD,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE(1)如图1,点D在线段BC上根据题意补全图1;AEF (用含有的代数式表示),AMF ;用等式表示线段MA,ME,MF

7、之间的数量关系,并证明(2)点D在线段BC的延长线上,且CAD60,直接用等式表示线段MA,ME,MF之间的数量关系,不证明8、如图,在ABC中, ABAC,AD是ABC的中线,BE平分ABC交AD于点E,连接EC求证:CE平分ACB9、如图,CEAB于点E,BFAC于点F,BDCD(1)求证:BDECDF;(2)求证:AEAF10、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC(1)求证DOBAOC;(2)求CEB的大小;(3)如图2,OAB固定不动,保持OCD的形状和大小不变,将OCD绕点O旋转(

8、OAB和OCD不能重叠),求CEB的大小-参考答案-一、单选题1、C【分析】先由翻折的性质得到AEN=AEN,BEM=BEM,从而可知NEM=180=90,然后根据余角的定义找出BME的余角即可【详解】解:由翻折的性质可知:AEN=AEN,BEM=BEMNEM=AEN+BEM=AEA+BEB=180=90由翻折的性质可知:MBE=B=90由直角三角形两锐角互余可知:BME的一个余角是BEMBEM=BEM,BEM也是BME的一个余角NBF+BEM=90,NEF=BMEANE、ANE是BME的余角综上所述,BME的余角有ANE、ANE、BEM、BEM故选:C【点睛】本题主要考查的是翻折的性质、余角

9、的定义,掌握翻折的性质是解题的关键2、C【分析】根据ABC45,CDAB可得出BDCD;利用AAS判定RtDFBRtDAC,从而得出BFAC;再利用AAS判定RtBEARtBEC,即可得到CEBF;由CEBF,BHBC,在三角形BCF中,比较BF、BC的长度即可得到CEBH【详解】解:CDAB,ABC45,BCD是等腰直角三角形BDCD,故正确;在RtDFB和RtDAC中,DBF90BFD,DCA90EFC,且BFDEFC,DBFDCA又BDFCDA90,BDCD,DFBDACBFAC,故正确;在RtBEA和RtBEC中BE平分ABC,ABECBE又BEBE,BEABEC90,RtBEARtB

10、ECCEACBF,故正确;CEACBF,BHBC,在BCF中,CBEABC22.5,DCBABC45,BFC112.5,BFBC,CEBH,故错误;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL在复杂的图形中有45的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点3、A【分析】根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解【详解】解:A,DBC3DBA,DCB3DCA,设,即故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键4、C【分析】由题意根据三角形的三条边

11、必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.87,能组成三角形,符合题意;D、3+59,不能组成三角形,不符合题意故选:C【点睛】本题主要考查对三角形三边关系的理解应用注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可5、C【分析】根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形【详解】根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,根据两个三角形对应的两角及其夹边相等,两个三角形全等,

12、即故选C【点睛】本题考查了三角形全等的性质与判定,掌握三角形的判定方法是解题的关键6、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80得到OCD, A的度数为110,D的度数为40, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.7、D【分析】已知条件ABAC,还有公共角A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可【详解】解:A、添加BDCE可得ADAE,可利用利用SAS定理判定ABEACD,故此选项不合题意;B、添加ADCAEB可利用AA

13、S定理判定ABEACD,故此选项不合题意;C、添加BC可利用ASA定理判定ABEACD,故此选项不合题意;D、添加BECD不能判定ABEACD,故此选项符合题意;故选:D【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键8、B【分析】ACBC,C,DEAC于E,FDAB于D,有,即可求得角度【详解】解:由题意知:,故选B【点睛】本题考查了等腰三角形的性质,几何图形中角度的计算解题的关键在于确定各角度之间的数量关系9、A【分析】由折叠得到B=BCD,根据三角形的内角和得A+B+ACB=180

14、,代入度数计算即可【详解】解:由折叠得B=BCD,A+B+ACB=180,65+2B+25=180,B=45,故选:A【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键10、C【分析】根据组成三角形的三边关系依次判断即可【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误B、 3,4,8中3+48,故不能组成三角形,与题意不符,选项错误C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确D、 3,3,7中3+37,故不能组成三角形,与题意不符,选项错误故选:C【点睛】本题考查了三角形的三边关系,

15、在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边二、填空题1、3【分析】由等腰三角形三线合一的性质,得到AD=DC=1,由BE=BC+CE不难求解【详解】解:三角形是等边三角形,BCAC2,又 是边的高线,DC, 1,故答案为:3.【点睛】本题考查了等边三角形的性质,掌握等腰三角形三线合一的性质是解本题的关键2、或【分析】根据全等三角形的判定方法即可解决问题【详解】解:由题意,根据,可以添加,使得,根据,可以添加,使得故答案为:或【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、角角边、边边边是解题的关键3、【分析】首先由平行线的性质求得EDO=

16、DOB,然后根据角平分线的定义求得EOD=DOB,最后根据等腰三角形的判定和性质即可判断【详解】解:EDOB,EDO=DOB,D是AOB平分线OC上一点,EOD=DOB,EOD=EDO,DE=OE,故答案为:=【点睛】本题主要考查的是平行线的性质、角平分线的定义以及等角对等边,根据平行线的性质和角平分线的定义求得EOD=EDO是解题的关键4、6【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解【详解】解:作点E关于AD的对称点F,连接CF,ABC是等边三角形,AD是BC边上的中垂线,点E关于AD的对应点为点F,CF就是EP+CP的最小值ABC是等边三角形

17、,E是AC边的中点,F是AB的中点,CF=AD=6,即EP+CP的最小值为6,故答案为6【点睛】本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键5、【分析】由ACB=90,BECD,ADCD,得到ACD+BCE=90,ADC=CEB=90,则ACD+CAD=90,ADBE,即可判断,即可利用AAS证明CADBCE,即可判断;则AD=CE,得到CD=CE+DE=AD+DE,即可判定;由ABACCD,得到ABCD,即可判断【详解】解:ACB=90,BECD,ADCD,ACD+BCE=90,ADC=CEB=90,ACD+CAD=90,ADBE,CAD=BCE,A

18、BE=BAD,故正确;又AC=CB,CADBCE(AAS),故正确;AD=CE,CD=CE+DE=AD+DE,故正确,ABACCD,ABCD,故错误;故答案为:【点睛】本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知相关知识是解题的关键三、解答题1、见解析【分析】过A作AFBC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案【详解】证明:如图,过A作AFBC于F,AB=AC,AD=AE,BF=CF,DF=EF,BF-DF=CF-EF,BD=CE【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合2、(1)仍是

19、真命题,证明见解析(2)仍能得到,作图和证明见解析【分析】(1)由角边角得出和全等,对应边相等即可(2)由(1)问可知BM=CN,故可由边角边得出和全等,对应角相等,即可得出(1)在和中有故结论仍为真命题(2)BM=CNCM=ANAB=AC,在和中有故仍能得到,如图所示【点睛】本题考查了全等三角形的判定和性质,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路3、(1)证明见解析;(2)证明见解析【分析

20、】(1)根据全等三角形的判定定理可直接证明;(2)根据(1)中结论可得,再由等角对等边得出,运用等式的性质进行计算即可证明(1)解:在与中,;(2)由(1)可得:,即【点睛】题目主要考查全等三角形的判定和性质,等角对等边的性质,理解题意,综合运用这些知识点是解题关键4、(1)见详解;(2)见详解【分析】(1)由题意易得,然后根据平行线的性质可得,进而问题可求证;(2)连接AG,由题意易得AB=AC,然后可知ABFACG,则有AF=AG,进而可得FAG=60,最后问题可求证【详解】证明:(1)是等边三角形,DEBC,是等边三角形;(2)连接AG,如图所示:是等边三角形,AB=AC,ABFACG(

21、SAS),是等边三角形,【点睛】本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键5、见解析【分析】根据等腰三角形的性质得到BAD=CAD,根据平行线的性质得到ADE=BAD,等量代换得到ADE=CAD于是得到结论【详解】解:ABC是等腰三角形,AB=AC,AD是底边BC上的中线,BAD=CAD,DEAB,ADE=BAD,ADE=CAD,AE=ED,AED是等腰三角形【点睛】本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键6、(1),理由见解析;(2)60;PM,见解析【分析】(1)根据等边三

22、角形的性质,可得ABAC,BAC60,再由由旋转可知:从而得到,可证得,即可求解 ;(2)由BPC120,可得PBCPCB60根据等边三角形的性质,可得BAC60,从而得到ABCACB120,进而得到ABPACP60再由,可得 ,即可求解;延长PM到N,使得NMPM,连接BN可先证得PCMNBM从而得到CPBN,PCMNBM进而得到 根据可得,可证得,从而得到 再由 为等边三角形,可得 从而得到 ,即可求解【详解】解:(1) 理由如下:在等边三角形ABC中,ABAC,BAC60,由旋转可知: 即在和ACP中 (2)BPC120,PBCPCB60在等边三角形ABC中,BAC60,ABCACB12

23、0,ABPACP60 ,ABPABP60即 ;PM 理由如下:如图,延长PM到N,使得NMPM,连接BNM为BC的中点,BMCM在PCM和NBM中 PCMNBM(SAS)CPBN,PCMNBM BPC120,PBCPCB60PBCNBM60即NBP60ABCACB120,ABPACP60ABPABP60即 在PNB和 中 (SAS) 为等边三角形, ,PM 【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键7、(1)见解析; ,;MFMAME,证明见解析;(2)【分析】(1)

24、按照要求旋转作图即可;由旋转和等腰三角形性质解出AEF;再由三角形外角定理求出AMF; 在FE上截取GFME,连接AG,证明AFG AEM且AGM为等边三角形后即可证得MFMAME;(2)根据题意画出图形,根据含30的直角三角形的性质,即可得到结论【详解】解:(1)补全图形如下图: CAE=DAC=,BAE=30+FAE=2(30+)AEF=60-;AMF=CAE+AEF=+60-=60,故答案是:60-,60; MFMAME 证明:在FE上截取GFME,连接AG 点D关于直线AC的对称点为E,ADC AECCAE CAD BAC30, EAN30又点E关于直线AB的对称点为F,AB垂直平分E

25、FAFAE,FANEAN 30,FAEFAMG AFAE,FAEF, GFME,AFG AEMAG AM又AMG,AGM为等边三角形MAMGMFMGGFMAME (2),理由如下:如图1所示,点E与点F关于直线AB对称,ANM=90,NE=NF,又NAM=30,AM=2MN,AM=2NE+2EM =MF+ME,MF=AM-ME;如图2所示,点E与点F关于直线AB对称,ANM=90,NE=NF,NAM=30,AM=2NM,AM=2MF+2NF=2MF+NE+NF=ME+MF,MF=MA-ME;综上所述:MF=MA-ME【点睛】本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是

26、本题关键8、见解析【分析】根据等腰三角形的性质,可得ADB=ADC=90,ABC=ACB,BD=CD,从而得到BDECDE,进而得到DCE=DBE,再由BE平分ABC,可得 ,进而得到,即可求证【详解】解:ABAC,AD是ABC的中线,ADB=ADC=90,ABC=ACB,BD=CD,DE=DE,BDECDE,DCE=DBE,BE平分ABC, ,CE平分ACB【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键9、(1)见解析;(2)见解析【分析】(1)根据CEAB,BFAC就可以得出BED=CFD=90,就可以由A

27、AS得出结论;(2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出AFBAEC就可以得出结论【详解】证明:(1)CEAB,BFAC,BEDCFD90,在BED和CFD中,BEDCFD(AAS);(2)BEDCFD,DEDF,BD+DFCD+DE,BFCE,在ABF和ACE中,ABFACE(AAS),AEAF【点睛】本题考查了垂直的性质的运用,全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键10、(1)见详解;(2)120;(2)120【分析】(1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,COD=AOB=60,则利用根据“SAS”判断AO

28、CBOD;(2)利用AOCBOD得到CAO=DBO,然后根据三角形内角和可得到AEB=AOB=60,即可求出答案;(3)如图2,与(1)的方法一样可证明AOCBOD;则CAO=DBO,然后根据三角形内角和可求出AEB=AOB=60,即可得到答案【详解】(1)证明:如图1,ODC和OAB都是等边三角形,OD=OC=OA=OB,COD=AOB=60,BOD=AOC=120,在AOC和BOD中AOCBOD;(2)解:AOCBOD,CAO=DBO,1=2,AEB=AOB=60,;(3)解:如图2,ODC和OAB都是等边三角形, OD=OC=OA=OB,COD=AOB=60,AOB+BOC=COD+BOC,即AOC=BOD,在AOC和BOD中AOCBOD;CAO=DBO,1=2,AEB=AOB=60,;即CEB的大小不变【点睛】本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁