《2022中考特训人教版初中数学七年级下册第九章不等式与不等式组章节测试试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022中考特训人教版初中数学七年级下册第九章不等式与不等式组章节测试试卷(含答案解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第九章不等式与不等式组章节测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、对有理数a,b定义运算:ab=ma +nb,其中m,n是常数,如果34=2,582,那么n的取值范围是( )AnBn2Dn2可得一个关于的一元一次不等式,解不等式即可得【详解】解:由题意得:,解得,由582得:,将代入得:,解得,故选:A【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键2、A【分析】解不等式组中两个不等式得出,结合其整数解的情况可得,再解方程得,由其解为非负数得出
2、,最后根据方程的解必须为非负整数可得的取值情况【详解】解:解不等式,得:,解不等式,得:,不等式组至少有4个整数解,解得,解关于的方程得,方程有非负整数解,则,所以,其中能使为非负整数的有2,3,4,5,6,7,共6个,故选:A【点睛】本题主要考查一元一次不等式组的整数解,解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解3、A【分析】先确定 再分析不符合题意,确定 再解不等式,结合不等式的整数解可得:,从而可得答案.【详解】解: 显然: 当时,不等式的解集为:,不等式没有正整数解,不符合题意,当时,不等
3、式的解集为: 不等式的整数解是1,2,3,4, 由得: 由得: 所以不等式组的解集为:故选A【点睛】本题考查的是根据不等式的整数解确定参数的取值范围,掌握“解不等式时,不等式的左右两边都乘以或除以同一个负数时,不等号的方向改变”是解题的关键.4、A【分析】先求出方程的解与不等式组的解集,再根据题意相确定的取值范围即可【详解】解:解方程32x3(k2),得:,由题意得,解得:,解不等式,得:, 解不等式,得:,不等式组有解,则,符合条件的整数的值的和为,故选A【点睛】本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键5、B【分析】根据不等
4、式的性质逐项分析即可【详解】解:A、ab,a-2b-2,故不符合题意; B、ab,-a-b,-a+1-b+1,故符合题意; C、ab,当c0时,acbc不成立,故不符合题意; D、ab,当c0时,不成立,故不符合题意;故选B【点睛】本题考查了不等式的性质:把不等式的两边都加(或减去)同一个整式,不等号的方向不变;不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式两边都乘(或除以)同一个负数,不等号的方向改变6、D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x5时
5、,4x+7(x-2)418,当x4时,4x+7(x-2)308,当x3时,4x+7(x-2)198,当x2时,4x+7(x-2)8故知x2不是原不等式的解故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.7、C【分析】根据不等式的性质即可求出答案【详解】解:A、ab,2021a2021b,故A错误;B、ab,2021a2021b,故B错误;C、ab,a2021b2021,故C正确;D、ab,2021a2021b,故D错误;故选:D【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型8、A【分析】根
6、据命题的定义分别进行判断即可【详解】解:若160,260,则12,是命题,符合题意;同位角相等吗?是疑问句,不是命题,不符合题意;画线段ABCD,没有对事情作出判断,不是命题,不符合题意;如果ab,bc,那么ac,是命题,符合题意;直角都相等,是命题,符合题意,命题有故选:A【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理9、A【分析】先求解不等式组,根据解得范围确定的范围,再根据方程解的范围确定的范围,从而确定的取值,即可求解【详解】解:由关于x的不等式组解得关于x的不等式组有且只有3个奇
7、数解,解得关于y的方程3y+6a=22-y,解得关于y的方程3y+6a=22-y的解为非负整数,且为整数解得且为整数又,且为整数符合条件的有、符合条件的所有整数a的积为故选:A【点睛】本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键10、C【分析】先求出不等式组2x14的解集,再求出一次不等式3x2a1的解集,根据一次不等式解集的分界点在5以及其右边,列不等式求解即可【详解】解:2x14,3x5,一次不等式3x2a1,解得,满足3x5都在范围内,解得故选择C【点睛】本题考查不等式组的解集与一次不等式的解集关系,利用解集的分界
8、点在5以及5的右边部分得出不等式是解题关键二、填空题1、 【分析】先解不等式组可得解集为:再利用整数解只有1,2,3,列不等式 再解不等式可得答案.【详解】解:由得: 由得: 因为不等式组有整数解,所以其解集为: 又整数解只有1,2,3, 解得: 故答案为:【点睛】本题考查的是一元一次不等式组的解法,一元一次不等式组是整数解问题,解题过程中注意确定字母取值范围时的“等于号”的确定是解题的关键.2、5【分析】先求出不等式的解集,然后求出满足题意的最小整数解即可【详解】解:解不等式得: ,满足不等式的最小整数解是5,故答案为:5【点睛】本题主要考查了解一元一次不等式和求满足题意的不等式的最小整数解
9、,解题的关键在于能够熟练掌握解不等式的方法3、且【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式求解【详解】解:由题意得:,且解得:且故答案为:且【点睛】本题考查了分式有意义的条件和二次根式有意义的条件,掌握:分式有意义,分母不为0;二次根式的被开方数是非负数是解题的关键4、 【分析】本题主要是根据不等式的性质:(1)不等式的两边同时加上或减去同一个数或式子,不等式的方向不改变;(2)不等式的两边同时乘或除以一个大于零的数或式子,不等号的方向不变;(3)不等式的两边同时乘或除以一个小于零的数或式子,不等号的方向改变据此可以对不等号的方向进行判断【详解】解:由数
10、轴的定义得:a0,b0,c0,abc ,(1)不等式ab的两边同加上3,不改变不等号的方向,则;(2)不等式ab的两边同减去b,不改变不等号的方向,则a-bb-b,即a-b0;(3)不等式ab的两边同乘以,不改变不等号的方向,则;(4)不等式ab的两边同乘以-2,改变不等号的方向,则b的两边同乘以-4,改变不等号的方向,则-4a-4b;不等式-4a-4b的两边同加上1,不改变不等号的方向,则b的两边同乘以正数,不改变不等号的方向,则 ;(7)不等式ab的两边同减去c,不改变不等号的方向,则;(8)不等式ab的两边同乘以正数b,不改变不等号的方向,则【点睛】本题主要是考查不等式的基本性质,熟练掌
11、握不等式的三个性质的应用是解本题的关键,同时不等式的性质(3)是类似题型中考查的重点及易错点5、【分析】由,可得出,又由 均为正整数,分析即可得到正确答案【详解】解:,同理可得:又 均为正整数满足条件的解有且只有一组,即故答案为:【点睛】本题考查三元一次方程的变式,牢记相关的知识点并能够灵活应用是解题关键三、解答题1、(1)无解,数轴见解析;(2)1x2,数轴见解析【解析】【分析】根据解不等式组的步骤,先求出每个不等式的解集,然后根据口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”求出不等式组的解集,表示在数轴上即可【详解】解:(1)由得解集为x3,由得解集为x3,在数轴上表示、的解
12、集,如图,所以不等式组无解(2)原式整理为,解不等式得:,解不等式得:,不等式组的解集为1x2,表示在数轴上如图:【点睛】本题考查了求不等式组的解集,熟练掌握求不等组的方法是解本题的关键2、(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种【解析】【分析】(1)设购进甲种钢笔每支需元,购进乙种钢笔每支需元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元”,即可得出关于,的二元一次方程组,解之即可得出甲、乙两种钢笔的单价;(2)利用总价单价数量,即可求出购进甲种钢笔80支、乙种钢笔60支所需费用;(3)设
13、购进甲种钢笔支,则购进乙种钢笔支,根据“购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍”,即可得出关于的一元一次不等式组,解之即可得出的取值范围,结合,均为正整数,即可得出进货方案的数量【详解】解:(1)设购进甲种钢笔每支需元,购进乙种钢笔每支需元,依题意得:,解得:答:购进甲种钢笔每支需5元,购进乙种钢笔每支需10元(2)(元答:需要1000元(3)设购进甲种钢笔支,则购进乙种钢笔支,依题意得:,解得:又,均为正整数,可以为150,152,154,156,158,160,该文具店共有6种购进方案【点睛】本题考查了二元一次方程组的应用、有理数的混合运算以及一元一次不等式
14、组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,找出关于的一元一次不等式组3、2x3,数轴见解析【解析】【分析】分别解两个不等式得到x3和x2,然后根据大小小大中间找确定不等式组的解集【详解】解:,解得x3,解得x2,所以不等式组的解集为2x3在数轴上表示解集如下【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到4、x8【解析】【分析】先分别解出两
15、个不等式,再求出公共解即可【详解】解:解不等式,得x8解不等式,得x等式组的解集是x8,不等式的解集在数轴上表示如图:【点睛】本题考查一元一次不等式组的解法,求两个不等式的公共解可以借助数轴求公共部分,也可借助口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”求公共部分5、不等式组的解集为,不等式组的整数解为3【解析】【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可【详解】解:解不等式得:,解不等式得:,不等式组的解集为,不等式组的整数解为3【点睛】本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法