中考强化练习2022年重庆市万州区中考数学历年真题定向练习-卷(Ⅰ)(含答案详解).docx

上传人:可****阿 文档编号:32550263 上传时间:2022-08-09 格式:DOCX 页数:18 大小:259.34KB
返回 下载 相关 举报
中考强化练习2022年重庆市万州区中考数学历年真题定向练习-卷(Ⅰ)(含答案详解).docx_第1页
第1页 / 共18页
中考强化练习2022年重庆市万州区中考数学历年真题定向练习-卷(Ⅰ)(含答案详解).docx_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《中考强化练习2022年重庆市万州区中考数学历年真题定向练习-卷(Ⅰ)(含答案详解).docx》由会员分享,可在线阅读,更多相关《中考强化练习2022年重庆市万州区中考数学历年真题定向练习-卷(Ⅰ)(含答案详解).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年重庆市万州区中考数学历年真题定向练习 卷() 考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正方形边长为4,对角线上有一动点,过作于,于,连结,

2、则的最小值为( )AB2C4D2、在式子中,分式的个数是()A2B3C4D53、点M为数轴上表示2的点,将点M沿数轴向右平移5个单位点N,则点N表示的数是( )A3B5C7D3 或一74、=( )A0B2C2D15、用正三角形和正六边形铺成一个平面,则在同一个顶点处,正三角形和正六边形的个数之比为( )ABCD或6、某服装厂同时卖出两套服装,每套均卖168元,以成本计算,其中一套盈利20%,另一套亏本20%,服装厂( )A盈利14元B盈利37.2元C亏本14元D既不盈也不亏7、若直线ykx+b平行于直线y3x+4,且过点(1,2),则该直线的解析式是()Ay3x2By3x5Cy3x+1Dy3x

3、+58、已知是方程的解,则( )A1B2C3D79、把0.0813写成科学记数法的形式,正确的是( )ABCD10、若|a|=8,|b|=5,且a+b0,那么a-b的值是( )A3或13B13或-13C3或-3D-3或-13第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若则a2_a2、把函数的图象向上平移6个单位长度后,所得到的函数表达式为_3、如图,平行于轴的直线分別交函数与的图象于、两点,过点作轴的平行线交的图象于点,直线DEAC,交的图象于点,则_ 线 封 密 内 号学级年名姓 线 封 密 外 4、在中,220,则_;5、已知|a| =4,=2,且ab0得出a,

4、b的取值情况,然后利用有理数减法法则计算.【详解】解:|a|8,|b|5,a8,b5,又ab0,a8,b5当a8,b5时,ab853,当a8,b5时,ab8(5)13,ab的值是3或13,故选A【点睛】本题考查了绝对值的性质以及有理数的加减运算,此类题要注意答案一般有2个两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下两组答案符合要求,解此类题目要看清条件,以免漏掉答案或写错二、填空题1、【解析】【分析】根据正数大于负数即可得出结果.【详解】解:a21.a2a故答案为.【点睛】本题考查了有理数的大小比较,根据正数大于0,0大于负数,正数大于负数来判断即可.2、y=3x+4【

5、分析】根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可知,将函数y=3x-2的图象向上平移6个单位所得函数的解析式为y=3x-2+6,即y=3x+4故答案为:y=3x+4【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键3、【分析】设A点坐标为(0,a),利用两个函数解析式求出点B、C的坐标,然后求出AB的长度,再根据CDy轴,利用y1的解析式求出D点的坐标,然后利用y2求出点E的坐标,从而得到DE的长度,然后求出比值即可得解 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:设A点坐标为(0,a),(a0),则x2=a,解得x=,

6、点B(,a),则x=,点C(,a),CDy轴,点D的横坐标与点C的横坐标相同,为,y1=()2=3a,点D的坐标为(,3a),DEAC,点E的纵坐标为3a,x=3,点E的坐标为(3,3a),DE=3-,故答案为:【点睛】本题是二次函数综合题型,主要利用了二次函数图象上点的坐标特征,根据平行于x轴的点的纵坐标相同,平行于y轴的点的横坐标相同,求出用点A的纵坐标表示出各点的坐标是解题的关键4、70【解析】【分析】利用平行四边形对角相等的性质和四边形内角和是360,解题即可【详解】四边形ABCD是C,+C=360又220+C=140所以70故填70【点睛】本题考查平行四边形的性质,能够熟练掌握平行四

7、边形性质是解题关键5、0【分析】根据绝对值的意义以及二次根式的定义即可求解. 线 封 密 内 号学级年名姓 线 封 密 外 【详解】=2,b=4,ab0,a0,|a| =4,-a=4,a=-4,.【点睛】本题主要考查了绝对值的意义以及二次根式的定义,注意a,b符号是解题关键.三、解答题1、47【分析】先乘方,再乘除,最后算减法【详解】解:= =3-50=-47故答案为:-47【点睛】本题考察有理数的混合运算,解题过程中注意运算顺序2、 (1)y1x+2;(2)SAOC.【解析】【分析】(1)根据当x1时,y1y2,当1x0时,y1y2。可得A点的横坐标,再将A点的横坐标代入反比例函数,计算A点

8、的纵坐标,因此可得A点的坐标,代入一次函数,可得k的值,即可的一次函数的解析式.(2)根据B点的坐标计算b的值,在联立方程组计算C点的坐标,再求出直线y1与x轴的交点,进而计算面积.【详解】解:(1)当x1时,y1y2,当1x0时,y1y2,点A的横坐标为1,当x1时,y3,则A(1,3),把A(1,3)代入ykx+2得k+23,解得k1y1的解析式为y1x+2;(2)y2x+b与x轴交于点B(3,0),6+b0,解得b6,直线BC的解析式为y2x6,解方程组 得 ,则点C的坐标为(,),直线yx+2与y轴的交点坐标为(2,0),SAOC(3+)2【点睛】本题主要考查一次函数与反比例函数的综合

9、题,关键在于根据直线与反比例函数的联立方程组,求交点坐标. 线 封 密 内 号学级年名姓 线 封 密 外 3、(1)见解析;(2)16或22【分析】(1)先计算判别式,将结果写成完全平方形式,再根据判别式的意义得出结论(2)运用求根公式得到方程的两个根,根据等腰三角形性质,将两个根代入计算,分情况讨论求出等腰三角形的周长【详解】(1)证明:D=-(3k+1)2-41(2k2+2k)=k2-2k+1=( k-1)2,无论k取什么实数值,(k-1)20,D0,所以无论k取什么实数值,方程总有实数根;(2)x2-(3k+1)x+2k2+2k=0,因式分解得:(x-2k)( x-k-1)=0,解得:x

10、1=2k,x2=k+1,b,c恰好是这个方程的两个实数根,设b=2k,c=k+1,分三种情况讨论:第一种情况:若c为等腰三角形的底边,a、b为腰,则a=b=2k=6,k=3,c=k+1,c=4,检验:a+bc,a+cb,b+ca,a-bc,a-cb,b-ca,a=b=6,c=4,可以构成等腰三角形,此时等腰三角形的周长为:6+6+4=16;第二种情况:若b为等腰三角形的底边,a、c为腰,则a=c=k+1=6,k=5,b=2k,b=10,检验:a+bc,a+cb,b+ca,b-ac,a-cb,b-ca,a=c=6,b=10,可以构成等腰三角形,此时等腰三角形的周长为:6+6+10=22;第三种情

11、况:若a为等腰三角形的底边,b、c为腰,则b=c,即:2k=k+1,解得k=1,a=6,b=2,c=2,检验:b+ca,a=6,b=2,c=2,不能构成等腰三角形;综上,等腰三角形的周长为16或22【点睛】本题主要考查一元二次方程根的判别式,本题第二问,根据一元二次方程根的情况求参数,分类讨论是解题关键4、,见解析.【分析】连结,,证明四边形是平行四边形即可解答.【详解】解:,. 线 封 密 内 号学级年名姓 线 封 密 外 理由如下:如图,连结, ,四边形是平行四边形, ,又,四边形是平行四边形, 且 【点睛】本题考查证明平行四边形,关键是画出合适的辅助线.5、a2【分析】根据一元二次方程的解的定义将x1代入方程即可求出答案【详解】解:将x1代入(a2)x2+(a23)xa+10,得(a2)+(a23)a+10,a240,a2,由于a20,故a2.【点睛】本题考查一元二次方程的解,解题的关键是熟练运用一元二次方程的解的定义,本题属于基础题型

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁