2021-2022学年人教版八年级数学下册第十八章-平行四边形定向测评试题(无超纲).docx

上传人:可****阿 文档编号:32545412 上传时间:2022-08-09 格式:DOCX 页数:28 大小:530.63KB
返回 下载 相关 举报
2021-2022学年人教版八年级数学下册第十八章-平行四边形定向测评试题(无超纲).docx_第1页
第1页 / 共28页
2021-2022学年人教版八年级数学下册第十八章-平行四边形定向测评试题(无超纲).docx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《2021-2022学年人教版八年级数学下册第十八章-平行四边形定向测评试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版八年级数学下册第十八章-平行四边形定向测评试题(无超纲).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版八年级数学下册第十八章-平行四边形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )ABCD2、在数学活动课上,老师和

2、同学们判断一个四边形门框是否为矩形下面是某个合作小组的4位同学拟定的方案,其中正确的是( )A测量对角线是否互相平分B测量两组对边是否分别相等C测量其内角是否均为直角D测量对角线是否垂直3、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B,AB与DC相交于点E,则下列结论正确的是 ( )ADABCABBACDBCD CADAEDAECE4、下列命题正确的是( )A对角线相等的四边形是平行四边形B对角线相等的四边形是矩形C对角线互相垂直的平行四边形是菱形D对角线互相垂直且相等的四边形是正方形5、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对

3、称点为F,连结EF并延长交BC于点G,连接DG,过点E作DE交DG的延长线于点H,连接,那么的值为( )A1BCD26、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D87、如图,将矩形纸片ABCD沿BD折叠,得到BCD,CD与AB交于点E,若140,则2的度数为()A25B20C15D108、菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF若EF,BD2,则菱形ABCD的面积为( )A2BC6D89、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针

4、方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D410、在RtABC中,C90,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,RtABD中,D90,AB8,BD4,在BD延长线上取一点C,使得DCBD,在直线AD左侧有一动点P满足PADPDB,连接PC,则线段CP长的最大值为_2、正方形的对角线长为cm,则它的周长为_cm3、如图中,分别是由个、个、个正方形连接成的图形,在图中,;在图中,;通过以上计算,请写出图中_(用含的式子表示)4、如图,正

5、方形的边长为4,它的两条对角线交于点,过点作边的垂线,垂足为,的面积为,过点作的垂线,垂足为,的面积为,过点作的垂线,垂足为,的面积为,的面积为,那么_,则_5、已知长方形ABCD中,AB4,BC10,M为BC中点,P为AD上的动点,则以B、M、P为顶点组成的等腰三角形的底边长是_三、解答题(5小题,每小题10分,共计50分)1、已知:ABCD的对角线AC,BD相交于O,M是AO的中点,N是CO的中点,求证:BMDN,BM=DN2、如图,ABCD是平行四边形,AD4,AB5,点A的坐标为(2,0),求点B、C、D的坐标3、如图,四边形ABCD是平行四边形,BAC90(1)尺规作图:在BC上截取

6、CE,使CECD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论4、在长方形纸片ABCD中,点E是边CD上的一点,将AED沿AE所在的直线折叠,使点D落在点F处(1)如图1,若点F落在对角线AC上,且BAC54,则DAE的度数为_(2)如图2,若点F落在边BC上,且ABCD=6,ADBC=10,求CE的长(3)如图3,若点E是CD的中点,AF的延长线交BC于点G,且ABCD=6,ADBC=10,求CG的长5、如图所示,在ABC中,AD是边BC上的高,CE是边AB上的中线,G是CE的中点,

7、AB=2CD,求证:DGCE -参考答案-一、单选题1、B【解析】【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2一个直角三角形的周长为3+,AB+BC=3+-2=1+等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2ABBC=4+2,AB2+BC2=AC2=4,2ABBC=2,ABBC=,即三角形的面积为ABBC=故选:B【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙

8、求出ACBC的值是解此题的关键,值得学习应用2、C【解析】【分析】根据矩形的判定:(1)四个角均为直角;(2)对边互相平行且相等;(3)对角线相等且平分,据此即可判断结果【详解】解:A、根据矩形的对角线相等且平分,故错误;B、对边分别相等只能判定四边形是平行四边形,故错误;C、矩形的四个角都是直角,故正确;D、矩形的对角线互相相等且平分,所以垂直与否与矩形的判定无关,故错误故选:C【点睛】本题主要考查的是矩形的判定方法,熟练掌握矩形的判定是解题的关键3、D【解析】【分析】根据翻折变换的性质可得BAC=CAB,根据两直线平行,内错角相等可得BAC=ACD,从而得到ACD=CAB,然后根据等角对等

9、边可得AE=CE,从而得解【详解】解:矩形纸片ABCD沿对角线AC折叠,点B的对应点为B,BAC=CAB,ABCD,BAC=ACD,ACD=CAB,AE=CE,结论正确的是D选项故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键4、C【解析】【分析】根据平行四边形、矩形、菱形以及正方形的判定方法,对选项逐个判断即可【详解】解:A、对角线互相平分的四边形是平行四边形,选项错误,不符合题意;B、对角线相等平行四边形是矩形,选项错误,不符合题意;C、对角线互相垂直的平行四边形是菱形,选项正确,符合题意;D、对角线互相垂直且相

10、等的平行四边形是正方形,选项错误,不符合题意;故选C【点睛】此题考查了平行四边形、矩形、菱形以及正方形的判定,掌握它们的判定方法是解题的关键5、B【解析】【分析】作辅助线,构建全等三角形,证明DAEENH,得AE=HN,AD=EN,再说明BNH是等腰直角三角形,可得结论【详解】解:如图,在线段AD上截取AM,使AM=AE, AD=AB,DM=BE,点A关于直线DE的对称点为F,ADEFDE,DA=DF=DC,DFE=A=90,1=2,DFG=90,在RtDFG和RtDCG中,RtDFGRtDCG(HL),3=4,ADC=90,1+2+3+4=90,22+23=90,2+3=45,即EDG=45

11、,EHDE,DEH=90,DEH是等腰直角三角形,AED+BEH=AED+1=90,DE=EH,1=BEH,在DME和EBH中,DMEEBH(SAS),EM=BH,RtAEM中,A=90,AM=AE, ,即=故选:B【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等6、B【解析】【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,AB的中点

12、,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键7、D【解析】【分析】根据矩形的性质,可得ABD40,DBC50,根据折叠可得DBCDBC50,最后根据2DB CDBA进行计算即可【详解】解:四边形ABCD是矩形,ABC90,CDAB,ABD=140,DBCABC-ABD=50,由折叠可得DB CDBC50,2DB CDBA504010,故选D【点睛】本题考查了长方形性质,平行线性质,折叠性质

13、,角的有关计算的应用,关键是求出DBC和DBA的度数8、A【解析】【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案【详解】解:E,F分别是AD,CD边上的中点,EF=,AC=2EF=2,又BD=2,菱形ABCD的面积S=ACBD=22=2,故选:A【点睛】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键9、C【解析】【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根

14、据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键10、A【解析

15、】【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半二、填空题1、#【解析】【分析】如图,取AD的中点O,连接OP、OC,然后求出OP、OC的长,最后根据三角形的三边关系即可解答【详解】解:如图,取AD的中点O,连接OP、OCPAD=PDB,PDB+ADP=90,PAD+ADP=90,即APD=90,AO=OD,PO=OA=AD,OP=,BD=CD=4,OD=,PCOP+OC,PC,PC的最大值为故填:【点睛】本

16、题主要考查了直角三角形斜边中线的性质、勾股定理等知识点,解题的关键在于正确添加常用辅助线,进而求得OP、OC的长2、16【解析】【分析】根据正方形对角线的长,可将正方形的边长求出,进而可将正方形的周长求出【详解】解:设正方形的边长为x,正方形的对角线长为cm,解得:x=4,正方形的边长为:4(cm),正方形的周长为44=16(cm)故答案为:16【点睛】本题考查了正方形的性质,勾股定理,解决本题的关键是掌握正方形的性质3、90n【解析】【分析】连接各小正方形的对角线,由图1中四边形内角和定理化简可得:;由图2中四边形内角和定理化简可得:;结合图形即可发现规律,求得结果【详解】解:连接各小正方形

17、的对角线,如下图: 图中,即,图中,即,以此类推,故答案为:【点睛】题目主要考查根据规律列出相应代数式,正方形性质等,理解题意,探索发现规律是解题关键4、 【解析】【分析】由正方形的性质得出、,得出规律,再求出它们的和即可【详解】解:四边形是正方形,;故答案为:;【点睛】本题是图形的变化题,考查了正方形的性质、三角形面积的计算,解题的关键是通过计算三角形的面积得出规律5、5或或【解析】【分析】分三种情况:当BP=PM时,点P在BM的垂直平分线上,取BM的中点N,过点N作NPBM交AD于P,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理即可求解;当BM=PM=5时,当PMB为锐角如图2时

18、,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理可得MN=3,从而BN=2,再由勾股定理可得BP的长;当BM=PM=5时,当PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,根据勾股定理MN=3,从而BN=8,再由勾股定理可得BP的长;即可求解【详解】解:BC10,M为BC中点,BM=5,当BMP为等腰三角形时,分三种情况:当BP=PM时,点P在AM的垂直平分线上,取BM的中点N,过点N作NPAD交AD于P,如图1所示:则PBM是等腰三角形底边BM的长为5当BM=PM=5时,当PMB为锐角如图2时,则四边形ABNP是矩形,PN=AB=4,MN= 在RtPBN中,当BM=P

19、M=5时,当PMB为钝角如图3时,则四边形ABNP是矩形,得AB=PN=4,同理可得 在RtPBN中,综上,以B、M、P为顶点组成的等腰三角形的底边长是:5 或或故答案为:5 或或【点睛】本题考查了矩形的性质、勾股定理以及分类讨论等知识,熟练掌握矩形的性质,进行分类讨论是解题的关键三、解答题1、见解析【分析】连接,根据平行四边形的性质可得AO=OC,DO=OB,由M是AO的中点,N是CO的中点,进而可得MO=ON,进而即可证明四边形是平行四边形,即可得证【详解】如图,连接,四边形ABCD为平行四边形,AO=OC,DO=OBM为AO的中点,N为CO的中点,即MO=ON四边形是平行四边形,BMDN

20、,BM=DN【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键2、【分析】根据,即可求得点,勾股定理求得即可求得点,再根据平行四边形的性质可得点坐标【详解】解:ABCD是平行四边形,轴,由题意可得,即,轴,、【点睛】此题考查了坐标与图形,涉及了勾股定理、平行四边形的性质,解题的关键是掌握并灵活运用相关性质进行求解3、(1)图形见解析;(2),证明见解析【分析】(1)以C为圆心CD长为半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD交点即为M;(2)证明DF平分,再利用角平分线的性质判定即可【详解】(1)图形如下:(2),证明如下:由(

21、1)可得:,CECD四边形ABCD是平行四边形ADBC,ABCD,即DF平分BAC90【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定与性质4、(1)18;(2)CE的长为;(3)CG的长为【分析】(1)根据矩形的性质得DAC=36,根据折叠的性质得DAE=18;(2)根据 矩形性质得BC90,BCAD10,CDAB6,根据折叠的性质得AFAD10,EFED,根据勾股定理得BF=8,则CF=2,设CEx,则EFED6x,根据勾股定理得,解得:,即CE的长为;(3)连接EG,由题意得DE

22、CE,由折叠的性质得:AFAD10,AFED90,FEDE,则EFGC=90,由HL得RtCEGRtFEG,则CGFG,设CGFGy,则AG10+y,BG10y,在RtABG中,由勾股定理得,解得,即CG的长为【详解】解:(1)四边形ABCD是矩形,DAB=90,DAC=90-BAC=90-54=36,AED沿AE所在的直线折叠,使点D落在点F处,DAE=EAC=DAC=36=18,故答案为:18;(2)四边形ABCD是长方形, BC90,BCAD10,CDAB6,由折叠的性质得:AFAD10,EFED,CFBCBF1082,设CEx,则EFED6x,在RtCEF中,由勾股定理得:,解得:,即

23、CE的长为;(3)解:如图所示,连接EG,点E是CD的中点, DECE,由折叠的性质得:AFAD10,AFED90,FEDE,EFGC=90,在RtCEG和RtFEG中,RtCEGRtFEG(HL),CGFG,设CGFGy,则AGAF+FG10+y,BGBCCG10y,在RtABG中,由勾股定理得:,解得:,即CG的长为【点睛】本题考查了矩形的性质,折叠的性质,全等三角形的判定与性质,勾股定理,解题的关键是掌握并灵活运用这些知识点5、见解析【分析】连接DE,根据直角三角形的性质得到DE=AB,再根据AB=2CD,得到CD=AB,从而可得CD=DE,根据等腰三角形的三线合一证明即可【详解】证明:连接DE,如图:AD是边BC上的高,CE是边AB上的中线,ADBD,E是AB的中点,DE=AB,AB=2CD,CD=AB,CD=DE,G是CE的中点,DGCE【点睛】本题考查了直角三角形的性质、等腰三角形的判定和性质解题的关键是掌握直角三角形的性质、等腰三角形的判定和性质,明确在直角三角形中,斜边上的中线等于斜边的一半

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁