2021-2022学年人教版八年级数学下册第十八章-平行四边形定向攻克练习题(无超纲).docx

上传人:可****阿 文档编号:32540174 上传时间:2022-08-09 格式:DOCX 页数:29 大小:469.64KB
返回 下载 相关 举报
2021-2022学年人教版八年级数学下册第十八章-平行四边形定向攻克练习题(无超纲).docx_第1页
第1页 / 共29页
2021-2022学年人教版八年级数学下册第十八章-平行四边形定向攻克练习题(无超纲).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2021-2022学年人教版八年级数学下册第十八章-平行四边形定向攻克练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版八年级数学下册第十八章-平行四边形定向攻克练习题(无超纲).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版八年级数学下册第十八章-平行四边形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段E

2、C绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D42、在平行四边形ABCD中,A30,那么B与A的度数之比为( )A4:1B5:1C6:1D7:13、如图,下列条件中,能使平行四边形ABCD成为菱形的是( )ABCD4、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD12,则DOE的周长是( )A12B15C18D245、菱形ABCD的周长是8cm,ABC60,那么这个菱形的对角线BD的长是()AcmB2cmC1cmD2cm6、如图所示,正方形ABCD的面积为16,ABE是等边三角形,点E在正方

3、形ABCD内,在对角线AC上有一点P,使PDPE的和最小,则最小值为( )A2B3C4D67、已知中,CD是斜边AB上的中线,则的度数是( )ABCD8、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )A(7,3)B(8,2)C(3,7)D(5,3)9、如图,在ABCD中,AD=2AB,F是AD的中点,作CEAB于E,在线段AB上,连接EF、CF则下列结论:BCD=2DCF;ECF=CEF;SBEC=2SCEF;DFE=3AEF,其中一定正确的是( )ABCD10、如图,正方形的面积为256,点F在上,点E在的延长线上

4、,的面积为200,则的长为( )A10B11C12D15第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,B45,AD8,E、H分别为边AB、CD上一点,将ABCD沿EH翻折,使得AD的对应线段FG经过点C,若FGCD,CG4,则EF的长度为 _2、已知如图,点E,F分别在正方形的边,上,若,则_ 3、如图,正方形ABCD中,BD为对角线,且BE为ABD的角平分线,并交CD延长线于点E,则E_4、如图,为了测量池塘两岸A,B两点之间的距离,可在AB外选一点C,连接AC和BC,再分别取AC、BC的中点D,E,连接DE并测量出DE的长,即可确定A

5、、B之间的距离若量得DE=15m,则A、B之间的距离为_m5、已知RtABC的周长是24,斜边上的中线长是5,则SABC_三、解答题(5小题,每小题10分,共计50分)1、在如图所示的43网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段点A固定在格点上(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a ,b , ;(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为 , 2、已知如图,在中,点是边上一点,连接,点是上一动点,连接(1)如图1,当时,连接,延长交于点,求证:;(2)如图2,以为

6、直角边作等腰,连接,若,当点在运动过程中,求周长的最小值3、如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点求证:(1)DAGDCG;(2)GCCH4、如图,在ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且ACE是等边三角形(1)求证:四边形ABCD是菱形;(2)若AED2EAD,ABa,求四边形ABCD的面积5、如图,在四边形ABCD中,ABDC,ABAD,对角线AC,BD交于点O,AC平分BAD,过点C作CEAB交AB的延长线于点E,连接OE(1)求证:四边形ABCD是菱形;(2)若AB,BD2,求OE的长-参考答案-一、单选题1

7、、C【解析】【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2

8、故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键2、B【解析】【分析】根据平行四边形的性质先求出B的度数,即可得到答案【详解】解:四边形ABCD是平行四边形,ADBC,B=180-A=150,B:A=5:1,故选B【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补3、C【解析】【分析】根据菱形的性质逐个进行证明,再进行判断即可【详解】解:A、ABCD中,本来就有AB=CD,故本选项错误;B、

9、ABCD中本来就有AD=BC,故本选项错误;C、ABCD中,AB=BC,可利用邻边相等的平行四边形是菱形判定ABCD是菱形,故本选项正确;D、ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定ABCD是矩形,而不能判定ABCD是菱形,故本选项错误故选:C【点睛】本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:有一组邻边相等的平行四边形是菱形,四条边都相等的四边形是菱形,对角线互相垂直的平行四边形是菱形4、B【解析】【分析】根据平行四边形的对边相等和对角线互相平分可得,OBOD,又因为E点是CD的中点,可得OE是BCD的中位线,可得OEBC,所以易求DOE的

10、周长【详解】解:ABCD的周长为36,2(BCCD)36,则BCCD18四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD12,ODOBBD6又点E是CD的中点,OE是BCD的中位线,DECD,OEBC,DOE的周长ODOEDEBD(BCCD)6915,故选:B【点睛】本题考查了三角形中位线定理、平行四边形的性质解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质5、B【解析】【分析】由菱形的性质得ABBC2(cm),OAOC,OBOD,ACBD,再证ABC是等边三角形,得ACAB2(cm),则OA1(cm),然后由勾股定理求出OB(cm),即可求解【详解】解:

11、菱形ABCD的周长为8cm,ABBC2(cm),OAOC,OBOD,ACBD,ABC60,ABC是等边三角形,ACAB2cm,OA1(cm),在RtAOB中,由勾股定理得:OB(cm),BD2OB2(cm),故选:B【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法6、C【解析】【分析】先求得正方形的边长,依据等边三角形的定义可知BE=AB=4,连接BP,依据正方形的对称性可知PB=PD,则PE+PD=PE+BP由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值为BE的长【详解】解:

12、连接BP四边形ABCD为正方形,面积为16,正方形的边长为4ABE为等边三角形,BE=AB=4四边形ABCD为正方形,ABP与ADP关于AC对称BP=DPPE+PD=PE+BP由两点之间线段最短可知:当点B、P、E在一条直线上时,PE+PD有最小值,最小值=BE=4故选:C【点睛】本题考查的是等边三角形的性质、正方形的性质和轴对称最短路线问题,熟知“两点之间,线段最短”是解答此题的关键7、B【解析】【分析】由题意根据三角形的内角和得到A=36,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论【详解】解:ACB=90,B=54,A=36,CD是斜边AB上的中线,CD=A

13、D,ACD=A=36.故选:B【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键8、A【解析】【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标【详解】解: 四边形ABCD为平行四边形。且。C点和D的纵坐标相等,都为3A点坐标为(0,0),B点坐标为(5,0), D点坐标为(2,3),C点横坐标为, 点坐标为(7,3)故选:A【点睛】本题主要是考察了平行四边形的性质、利用线段长求点坐标,其中,熟练应用平行四边形对边平行且相等的性

14、质,是解决与平行四边形有关的坐标题的关键9、B【解析】【分析】根据易得DF=CD,由平行四边形的性质ADBC即可对作出判断;延长EF,交CD延长线于M,可证明AEFDMF,可得EF=FM,由直角三角形斜边上中线的性质即可对作出判断;由AEFDMF可得这两个三角形的面积相等,再由MCBE易得SBEC2SEFC ,从而是错误的;设FEC=x,由已知及三角形内角和可分别计算出DFE及AEF,从而可判断正确与否【详解】F是AD的中点,AF=FD,在ABCD中,AD=2AB,AF=FD=CD,DFC=DCF,ADBC,DFC=FCB,DCF=BCF,BCD=2DCF,故正确;延长EF,交CD延长线于M,

15、四边形ABCD是平行四边形,ABCD,A=MDF,F为AD中点,AF=FD,在AEF和DFM中, ,AEFDMF(ASA),FE=MF,AEF=M,CEAB,AEC=90,AEC=ECD=90, FM=EF,FC=FE,ECF=CEF,故正确;EF=FM,SEFC=SCFM , MCBE,SBEC2SEFC , 故SBEC=2SCEF , 故错误; 设FEC=x,则FCE=x,DCF=DFC=90x,EFC=1802x,EFD=90x+1802x=2703x,AEF=90x,DFE=3AEF,故正确,故选:B 【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性

16、质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点10、C【解析】【分析】先证明RtCDFRtCBE,故CE=CF,根据CEF的面积计算CE,根据正方形ABCD的面积计算BC,根据勾股定理计算BE【详解】解:ECF=90,DCB=90,BCE=DCF,CDFCBE,故CF=CE因为RtCEF的面积是200,即CECF=200,故CE=20,正方形ABCD的面积=BC2=256,得BC=16根据勾股定理得:BE=12故选:C【点睛】本题考查了正方形,等腰直角三角形面积的计算,考查了直角三角形中勾股定理的运用,本题中求证CF=CE是解题的关键二、填空题1、【解析】【分析】延长CF与

17、AB交于点M,由平行四边形的性质得BC长度,GMAB,由折叠性质得GF,EFM,进而得FM,再根据EFM是等腰直角三角形,便可求得结果【详解】解:延长CF与AB交于点M,FGCD,ABCD,CMAB,B=45,BC=AD=8,CM=4,由折叠知GF=AD=8,CG=4,MF=CM-CF=CM-(GF-CG)=4-4,EFC=A=180-B=135,MFE=45,EF=MF=(4-4)=8-4故答案为:8-4【点睛】本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形2、14【解析】【分析】过点作的垂线,交延长线于点,先根据正方形的性质、三角形全等的判定定

18、理证出,根据全等三角形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质即可得出答案【详解】解:如图,过点作的垂线,交延长线于点,四边形是正方形,在和中,又,在和中,故答案为:14【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形是解题关键3、22.5【解析】【分析】由平行线的性质可知,由角平分线的定义得,进而可求E的度数【详解】解:为正方形,平分,又,故答案为:22.5【点睛】本题考查了正方形的性质,平行线的性质,角平分线的定义,熟练掌握正方形的性质是解答本题的关键4、30【解析】【分析】根据三角形中位线的性质解答即可【详解】解:点

19、D,E分别是AC,BC的中点,DE是ABC的中位线,AB=2DE=30m故填30【点睛】本题主要考查的是三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键5、24【解析】【分析】先根据直角三角形的性质求解, 再利用周长求解, 两边平方结合勾股定理可得,利用三角形面积公式求解即可【详解】解:如图RtABC,C=90,点D为AB中点,为RtABC斜边上的中线, , ,由, ,SABC=故答案为:24【点睛】本题考查的是直角三角形斜边上的中线的性质,勾股定理的应用,完全平方公式,三角形面积公式,掌握以上知识是解题的关键三、解答题1、(1),2,;(2)4或5【分析】(

20、1)借助网格得出最大的无理数以及最小的无理数,进而求出即可;(2)根据要求周长边长为的菱形即可【详解】解:(1)由题意得:a=,b=2,;故答案为:,2,;(2)如图1,2中,菱形ABCD即为所求菱形ABCD的面积为=42=4或菱形ABCD的面积=5,故答案为:4或5【点睛】本题考查作图-应用与设计作图,无理数,勾股定理,菱形的性质等知识,解题的关键是理解题意,正确作出图形解决问题2、(1)证明见解析;(2)【分析】(1)通过证明CEKBEF及KEDFED即可证明;(2)延长CE到点P,使EPCE,先证明点G在过点P且与CE垂直的直线PN上运动,再作点E关于点P的对称点Q,连接BQ交PN于点G

21、,此时BEG的周长最小,求出此时GE+GB+BE的值即可【详解】证明:(1)四边形ABCD是平行四边形,KABE,BFAB, ABF90, ABE90EBFBFE,KBFE,BECE,CEKBEF(AAS),CKBF,EKEF,KEDEBC,FEDECB,BECE,EBCECB,KEDFED,EDED,KEDFED(SAS),DKDF,(2)如图,作BNBE,GNBN于点N,延长NG交射线CE于点P,则EBNFBG90,NBGEBF90GBE,NBEF90,BGBF,BNGBEF(AAS),BNBE;EBNNBEP90,四边形BEPN是正方形,PEBECE,当点F在CE上运动时,点G在PN上运

22、动;延长EP到点Q,使PQPE,连接BQ交PN于点G,PN垂直平分EQ,点Q与点E关于直线PN对称,两点之间,线段最短,此时GE+GBGQ+GBBQ最小,BE为定值,此时GE+GB+BE最小,即BEG的周长最小;作DHCE于点H,则DHEDHC90,ECBEBC45,HEDECB45,HDE45HED,DHEH,DH2+EH22DH2DE2,DHEH1;CH,BECEEH+CH1+23,EQ2PE2BE6,BEQ90,BQ,GE+GB+BE,BEG周长的最小值为【点睛】本题重点考查平行四边形的性质、正方形的判定与性质、等腰直角三角形的性质、全等三角形的判定与性质、勾股定理、以及运用轴对称的性质

23、求线段和的最小值问题的求解等知识与方法,深入探究与挖掘题中的隐含条件并且正确地作出辅助线是解题的关键,此题综合性强,难度大,属于考试压轴题3、(1)见解析;(2)见解析【分析】(1)要证明,需把两角放到两三角形中,证明两三角形与全等得到,全等的方法是:由为正方形,得到与相等,与相等,再加上公共边,利用“”得到全等,利用全等三角形的对应角相等得证;(2)要证明与垂直,需证,即,方法是:由正方形的对边与平行,根据两直线平行,内错角相等得到与相等,由(1)得到的与相等,等量代换得到与相等,再由为直角三角形斜边上的中线,得到与相等都等于斜边的一半,根据“等边对等角”得到与相等,又等于,等量代换得到,即

24、,得证【详解】证明:(1)为正方形,又,;(2)为正方形,又,为直角三角形斜边边的中点,又,即,【点睛】本题考查了正方形的性质,全等三角形的判定与性质,以及直角三角形的性质,以及直角三角形斜边上的中线等于斜边的一半,是一道证明题解题的关键是要求学生熟练掌握正方形的性质:四条边都相等,四个角相等都为直角,对角线互相垂直且平分,一条对角线平分一组对角4、(1)见解析;(2)正方形ABCD的面积为【分析】(1)由等边三角形的性质得EOAC,即BDAC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD是正方形,即可得出答案【详解】(1)证明:四边形ABCD是平行四边形,AO

25、OC,ACE是等边三角形,EOAC (三线合一),即BDAC,ABCD是菱形;(2)解:ACE是等边三角形,EAC60由(1)知,EOAC,AOOCAEOOEC30,AOE是直角三角形,AED2EAD,EAD15,DAOEAOEAD45,ABCD是菱形,BAD2DAO90,菱形ABCD是正方形,正方形ABCD的面积AB2a2【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD为菱形是解题的关键5、(1)见解析;(2)2【分析】(1)先判断出OABDCA,进而判断出DACDCA,得出CDADAB,即可得出结论;(2)先判断出OEOAOC,再求出OB1,利用勾股定理求出OA,即可得出结论【详解】(1)证明:ABCD,OABDCA,AC为DAB的平分线,OABDAC,DCADAC,CDADAB,ABCD,四边形ABCD是平行四边形,ADAB,平行四边形ABCD是菱形;(2)解:四边形ABCD是菱形,OAOC,BDAC,CEAB,OEOAOC,BD2,OBBD1,在RtAOB中,AB,OB1,OA2,OEOA2【点睛】此题主要考查特殊平行四边形的判定与性质,解题的关键是菱形的判定与性质、勾股定理的应用

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁