2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题训练试题(含解析).docx

上传人:可****阿 文档编号:32543195 上传时间:2022-08-09 格式:DOCX 页数:29 大小:1.19MB
返回 下载 相关 举报
2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题训练试题(含解析).docx_第1页
第1页 / 共29页
2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题训练试题(含解析).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题训练试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版九年级数学下册第三章-圆专题训练试题(含解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第三章 圆专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若O是ABC的内心,当时,( )A130B160C100D1102、如图,点A,B,C均在O上,连接OA,OB,AC

2、,BC,如果OAOB,那么C的度数为( )A22.5B45C90D67.53、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )A点在圆内B点在圆外C点在圆上D无法判断4、已知O的半径为3,点P到圆心O的距离为4,则点P与O的位置关系是()A点P在O外B点P在O上C点P在O内D无法确定5、如图,中的半径为1,内接于若,则的长是( )ABCD6、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A直径所对圆周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦7、如图,PA是的切线,切点为A,PO的延长线交于点B,若,

3、则的度数为( )A20B25C30D408、在平面直角坐标系xOy中,已知点A(4,3),以点A为圆心,4为半径画A,则坐标原点O与A的位置关系是()A点O在A内B点O在A外C点O在A上D以上都有可能9、如图,ABCD是的内接四边形,则的度数是( )A50B100C130D12010、如图,有一个弓形的暗礁区,弓形所含的圆周角,船在航行时,为保证不进入暗礁区,则船到两个灯塔A,B的张角应满足的条件是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知圆锥的底面半径为7cm,它的侧面积是35cm,则这个圆锥的母线长为_2、如图,在平面直角坐标系中,点,的横、

4、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为_3、如图,正方形ABCD内接于O,点P在上,则BPC的度数为_4、若一个扇形的半径是18cm,且它的弧长是,则此扇形的圆心角等于_5、如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BGAE于点G,连接CG并延长交AD于点F,则AF的最大值是_三、解答题(5小题,每小题10分,共计50分)1、如图,为的直径,弦的延长线相交于点,且求证:2、如图1,ABC为圆内接三角形,AEBC于D交O于点E,BFAC于F交AE于点G(1)求证:DGDE;(2)如图2,连接BE,作OMBE于M,求证:AC2OM;(3)在(2)的条

5、件下,连接OG、CE,若OGCE,BG2FC+2FG,AG2,求OM长3、如图,点D是上一点,与相交于点F,且(1)求证:;(2)求证:;(3)若点D是中点,连接,求证:平分4、(问题背景)如图1,P是等边ABC内一点,APB150,则PA2+PB2PC2小刚为了证明这个结论,将PAB绕点A逆时针旋转60,请帮助小刚完成辅助线的作图;(迁移应用)如图2,D是等边ABC外一点,E为CD上一点,ADBE,BEC120,求证:DBE是等边三角形;(拓展创新)如图3,EF6,点C为EF的中点,边长为3的等边ABC绕着点C在平面内旋转一周,直线AE、BF交于点P,M为PG的中点,EFFG于F,FG43,

6、请直接写出MC的最小值5、如图,在ABC中,C90,点O为边BC上一点以O为圆心,OC为半径的O与边AB相切于点D(1)尺规作图:画出O,并标出点D(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,若CDBD,且AC6求劣弧的长-参考答案-一、单选题1、A【分析】由三角形内角和以及内心定义计算即可【详解】又O是ABC的内心OB、OC为角平分线,180=180-50=130故选:A【点睛】本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形2、B【分析】根据同弧所对的圆周角是圆心角的一半即可得【详解】

7、解:,故选:B【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键3、A【分析】直接根据点与圆的位置关系进行解答即可【详解】解:O的半径为5cm,点P与圆心O的距离为4cm,5cm4cm,点P在圆内故选:A【点睛】本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外4、A【分析】根据点与圆心的距离与半径的大小关系即可确定点P与O的位置关系【详解】解:O的半径分别是3,点P到圆心O的距离为4,dr,点P与O的位置关系是:点在圆外故选:A【点睛】本题主要考查了点与圆的位置关系,准确

8、分析判断是解题的关键5、B【分析】连接OA、OB,过点O作,由三角形内角和求出,由圆周角定理可得,由得是等腰三角形,即可知,根据三角函数已可求出AD,进而得出答案【详解】如图,连接OA、OB,过点O作,是等腰三角形,故选:B【点睛】本题主要考查了圆周角定理,解题的关键在于能够熟练掌握圆周角定理6、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解

9、题的关键.7、B【分析】连接OA,如图,根据切线的性质得PAO=90,再利用互余计算出AOP=50,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90,P=40,AOP=50,OA=OB,B=OAB,AOP=B+OAB,B=AOP=50=25故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系8、B【分析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当dr时,点在圆外;当d=r时,点在圆上;点在圆外;当dr时,点在

10、圆内;来确定点与圆的位置关系【详解】解:点A(4,3),A的半径为4,点O在A外;故选:B【点睛】本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系9、B【分析】根据圆的内接四边形对角互补求得,进而根据圆周角定理求得【详解】解:ABCD是的内接四边形,故选B【点睛】本题考查了圆内接四边形对角互补,圆周角定理,求得是解题的关键10、D【分析】本题利用了三角形外角与内角的关系和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半【详解】如图,AS交圆于点E,连接EB,由圆周角定理知,AEB=C=50,而

11、AEB是SEB的一个外角,由AEBS,即当S50时船不进入暗礁区所以,两个灯塔的张角ASB应满足的条件是ASB50cosASBcos50,故选:D【点睛】本题考查三角形的外角的性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题二、填空题1、5cm【分析】根据圆锥的侧面展开图是扇形,圆锥的底面周长是扇形的弧长,母线为扇形的半径,结合扇形的面积公式求解即可【详解】解:圆锥的底面周长为27=14,设圆锥母线长为l,则14l=35,解得:l=5,故答案为:5cm【点睛】本题考查圆锥的侧面积计算、扇形面积公式,熟练掌握圆锥侧面展开图与扇形之间的关系是解答的关键2、(2,1)【分析】根

12、据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心【详解】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心如图所示,则圆心是(2,1)故答案为(2,1)【点睛】本题考查垂径定理的应用,解答此题的关键是熟知垂径定理,即“垂直于弦的直径平分弦”3、45度【分析】连接OB、OC,根据正方形的性质得到BOC的度数,利用圆周角与圆心角的关系得到答案【详解】解:连接OB、OC,四边形ABCD是正方形,BOC=90,BPC=,故答案为:45【点睛】此题考查了圆内接正方形的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记各

13、知识点是解题的关键4、60度【分析】根据变形为n=计算即可【详解】扇形的半径是18cm,且它的弧长是,且n=60,故答案为:60【点睛】本题考查了弧长公式,灵活进行弧长公式的变形计算是解题的关键5、1【分析】以AB为直径作圆,当CF与圆相切时,AF最大根据切线长定理转化线段AFBCCF,在RtDFC利用勾股定理求解【详解】解:以AB为直径作圆,因为AGB90,所以G点在圆上当CF与圆相切时,AF最大此时FAFG,BCCG设AFx,则DF4x,FC4x,在RtDFC中,利用勾股定理可得:42(4x)2(4x)2,解得x1故答案为:1【点睛】本题主要考查正方形的性质、圆中切线长定理以及勾股定理,熟

14、练掌握相关性质定理是解本题的关键三、解答题1、见解析【分析】如图:连接AC,根据为的直径可得ACB=90,即ACBP.再根据BC=PC可知AC为BP的垂直平分线可得AB=AP,根据等腰三角形的性质得到P=B,最后由三角形外角的性质即可证明【详解】证明:如图:连接AC,AB为圆O的直径,ACB=90,即ACBP.BC=PC,AC为BP的垂直平分线,AB=AP,P=B,BAD=P+B=2P【点睛】本题主要考查了圆周角定理、垂直平分线的判定与性质、三角形外角的性质等知识点,根据题意作出辅助线、构造出圆周角是成为解答本题的关键2、(1)见解析;(2)见解析;(3)【分析】(1)连接BE,首先根据题意得

15、到,然后根据同弧所对的圆周角相等得到,然后根据等角的余角相等得到,进而得到,最后根据等腰三角形三线合一性质即可证明出DGDE;(2)连接AO,OB,OE,OC,作OHAC于点H,首先根据圆周角定理以及角度之间的转化得到,然后证明,最后利用垂径定理即可证明AC2OM;(3)过点O作OHAC于H,ONBG于N,连接CG,OB,首先得到四边形ONFH是矩形,然后根据BG2FC+2FG得出NG=CF,然后证明出CDGCDE(SAS)和ONGGFC(HL),设GF=ON=x,CF=GN=y,根据勾股定理得到关于x和y的方程,然后根据和得到关于x和y的方程,联立方程即可求出OM的长度【详解】解:(1)如图

16、所示,连接BE,BFAC,AEBC,又又AEBCDGDE(三线合一);(2)如图所示,连接AO,OB,OE,OC,作OHAC于点H,OHAC,即又,AC2OM;(3)如图所示,过点O作OHAC于H,ONBG于N,连接CG,OB,又四边形ONFH是矩形,NF=OH,由(2)可知,又BG=2FC+2FG,ME=NF=FG+GN, NG=CF,在和中,CDGCDE(SAS)CE=CG=OG,在和中, ONGGFC(HL),OGN=GCF,OGC=90,是等腰直角三角形, ,设GF=ON=x,CF=GN=y,则,在直角ONG中,则,在直角ONB中,则, , ,在AGF中,即,将代入得:,即,联立解得,

17、【点睛】此题考查了圆的综合题,勾股定理,全等三角形的性质和判定,圆周角定理,三角函数等知识,解题的关键是熟练掌握以上知识点以及正确作出辅助线,根据题意列出方程求解3、(1)证明见解析;(2)证明见解析;(3)证明见解析【分析】(1)在和中,故可证明三角形相似(2)由得出(3)法一:由题意知,由得,有,所以可得,又因为可得,;由于,进而说明,得出平分法二:通过得出F、D、C、E四点共圆,由得,从而得出平分【详解】解:(1)证明在和中 (2)证明:在和中 (3)证明:又D是中点,平分法二:F、D、C、E四点共圆又D是点,平分【点睛】本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知

18、识点解题的关键与难点在于角度的转化解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解4、(1)见解析;(2)见解析;(3)21-3【分析】(1)根据PAB绕点A逆时针旋转60作图即可;(2)由BEC120得BED60,由平行线的性质得ADEBED60,由等边三角形的性质得BACABCACB60,故可知A、D、B、C共圆,由圆内接四边形对角互补得出ADB120,故可求出BDE60,即可得证;(3)由CACECBCF3得A、E、B、F共圆C得出PABCBFCFB,进而得出APFABC60,作EPF的外接圆Q,则EQF120,求出EQ,连接QG取中点N,由三角形中位线得

19、MN,以点N为圆心MN为半径作N,连接CN,与N交于点M,即CM最小为CM=CN-MN,建立平面直角坐标系求出即可【详解】(1)如图1所示,将PAB绕点A逆时针旋转60得PAC;(2)BEC120,BED60,ADDE,ADEBED60,ABC是等边三角形,BACABCACB60,A、D、B、C共圆,如图2所示:ADB120,ADEBED60,BDE60,DBE是等边三角形;(3)如图3,CACECBCF3,A、E、B、F共圆C,PABCBFCFB,ABFABC+CBFPAB+APB,APFABC60,EPF60,EF6,作EPF的外接圆Q,则EQF120,QCEF,EQC60,PQ=FQ=E

20、Q=ECsin60=332=23,连接QG取中点N,则MNPQ且MN=12PQ=3,以点N为圆心MN为半径作N,连接CN,与N交于点M,即CM最小为CM=CN-MN=CN-MN,以点F为原点建立平面直角坐标系,Q(-3,-3),C(-3,0),G(0,-63),N(-32,-532),CN=(32)2+(532)2=21,CM最小为CN-MN=21-3【点睛】本题考查等边三角形的判定与性质,解三角函数以及圆的性质,根据题意作出圆是解题的关键5、(1)作图见解析;(2)【分析】(1)由于D点为O的切点,即可得到OC=OD,且ODAB,则可确定O点在A的角平分线上,所以应先画出A的角平分线,与BC

21、的交点即为O点,再以O为圆心,OC为半径画出圆即可;(2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出DCB的度数,然后进一步求出COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可【详解】解:(1)如图所示,先作A的角平分线,交BC于O点,以O为圆心,OC为半径画出O即为所求;(2)如图所示,连接CD和OD,由题意,AD为O的切线,OCAC,且OC为半径,AC为O的切线,AC=AD,ACD=ADC,CD=BD,B=DCB,ADC=B+BCD,ACD=ADC=2DCB,ACB=90,ACD+DCB=90,即:3DCB=90,DCB=30,OC=OD,DCB=ODC=30,COD=180-230=120,DCB=B=30,在RtABC中,BAC=60,AO平分BAC,CAO=DAO=30,在RtACO中,【点睛】本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁