人教版九年级数学下册第二十六章《反比例函》同步测试试题(名师精选).docx

上传人:可****阿 文档编号:32542870 上传时间:2022-08-09 格式:DOCX 页数:26 大小:699.06KB
返回 下载 相关 举报
人教版九年级数学下册第二十六章《反比例函》同步测试试题(名师精选).docx_第1页
第1页 / 共26页
人教版九年级数学下册第二十六章《反比例函》同步测试试题(名师精选).docx_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《人教版九年级数学下册第二十六章《反比例函》同步测试试题(名师精选).docx》由会员分享,可在线阅读,更多相关《人教版九年级数学下册第二十六章《反比例函》同步测试试题(名师精选).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版九年级数学下册第二十六章反比例函同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列函数,其中y是x的反比例函数的是( )ABCD2、下列各点中,在反比例函数y的图象上的是( )A(1,4)

2、B(1,4)C(1,4)D(2,3)3、下列关系式中,表示y是x的反比例函数的是( )ABCD4、市一小学数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示,设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形长y(cm)与宽x(cm)之间的函数关系的图象大致是( )A BCD5、已知点,都在反比例函数的图象上,那么、的大小关系是( )ABCD6、下列函数中,是关于的反比例函数的是( )ABCD7、如图,四边形OABC是矩形,四边形ADEF是边长为2的正方形,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点F在线段AB上,点B,E在反比例函数y(k0)的图象上,若S四

3、边形OABCS四边形ADEF2,则k的值为()A2B3C4D68、如图,点P,点Q都在反比例函数y的图象上,过点P分别作x轴、y轴的垂线,两条垂线与两坐标轴围成的矩形面积为S1,过点Q作x轴的垂线,交x轴于点A,OAQ的面积为S2,若S1+S23,则k的值为()A2B1C1D29、已知点在函数的图象上,则的大小关系是( )ABCD不能确定10、点,都在反比例函数的图象上,若,则( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在x轴的正半轴上依次截取OA1A1A2A2A3,过点A1、A2、A3、分别作x轴的垂线与反比例函数y(x0)的图象相交于点P1、

4、P2、P3、,得直角三角形OP1A1、A1P2A2、A2P3A3、,设其面积分别为S1、S2、S3、,则Sn的值为_2、已知函数是关于的反比例函数,则实数的值是_3、反比例函数(是常数,)的图象经过点,那么这个函数图象所在的每个象限内的值随值的增大而_(填“增大”或“减小”)4、如图,直线yx+m与双曲线相交于A,B两点,直线yx与双曲线相交于C,D两点,则四边形ACBD面积的最小值为_5、如题图,反比例函数y的图象与一次函数yx+2的图象交于点A(1,m),则反比例函数y的表达式为 _三、解答题(5小题,每小题10分,共计50分)1、如图,反比例函数的图象经过ABOD的顶点D,点A,B的坐标

5、分别为(0,3),(-2,0)(1)求出函数解析式;(2)设点P(点P与点D不重合)是该反比例函数图象上的一动点,若ODOP,则P点的坐标为 2、如图是反比例函数 的图象根据图象,回答下列问题:(1)k 的取值范围是k0还是k0?说明理由;(2)如果点A(-3,y1),B(-2 ,y2)是该函数图象上的两点,试比较y1,y2的大小3、当x=2时,y=(1)求y与x的函数关系式;(2)当x=4时,求y的值5已知正方形的面积为9,点是坐标原点,点在轴上,点在轴上,点在函数的图象上,点是函数的图象上任意一点过点分别作轴、轴的垂线,垂足分别为、若矩形和正方形不重合部分(阴影)面积为(提示:考虑点在点的

6、左侧或右侧两种情况)(1)求点的坐标和的值;(2)写出关于的函数关系式;(3)当时,求点的坐标4、如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(3,m),B(n,3),一次函数图象与y轴交于点C(1)求m,n的值;(2)求一次函数的解析式;(3)求AOB的面积5、在直角坐标系中,直线yx与反比例函数y的图象在第一、三象限分别交于A、B两点,已知B点的纵坐标是2(1)写出点A的坐标,并求反比例函数的表达式;(2)将直线yx沿y轴向上平移5个单位后得到直线l,l与反比例函数图象在第一象限内交于点C,与y轴交于点D()SABCSABD;(请用“”或“”或“”填空)()求ABC的面积

7、-参考答案-一、单选题1、B【分析】根据反比例函数的定义即可判断【详解】解:A、是一次函数,不是反比例函数,故此选项不合题意;B、是反比例函数,故此选项符合题意;C、不是反比例函数,故此选项不合题意;D、是正比例函数,不是反比例函数,故此选项不合题意;故选B【点睛】此题主要考查反比例函数的识别,解题的关键是熟知反比例函数的定义:一般地,形如的函数叫做反比例函数2、C【分析】根据将点的横坐标代入反比例函数y,得到的结果是否等于该点的纵坐标,即可求解【详解】解:A、当 时, ,则(1,4)不在反比例函数y的图象上,故本选项错误,不符合题意;B、当 时, ,则(1,4)不在反比例函数y的图象上,故本

8、选项错误,不符合题意;C、当 时, ,则(1,4)在反比例函数y的图象上,故本选项正确,符合题意;D、当 时, ,则(2,3)不在反比例函数y的图象上,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了反比例函数的性质,熟练掌握反比例函数的性质是解题的关键3、D【分析】根据反比例函数定义:形如的函数是反比例函数,即可得到答案【详解】解:A、,分母中的x的指数是2,所以不是反比例函数,故本选项不符合题意;B、是正比例函数,故本选项不符合题意; C、,没有加1才是反比例函数,故本选项不符合题意;D、是反比例函数,故本选项符合题意;故选D【点睛】本题考查了反比例函数的定义,熟记正比例函数,反比

9、例函数以及一次函数的定义是解题的关键,是基础题,难度不大4、A【分析】根据题意有:xy=200;故y与x之间的函数图象为反比例函数,且根据x、y的实际意义有x、y应大于0【详解】解:xy=200y= (x0,y0)故选A【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限5、A【分析】根据题意先判断出m2+1是正数,再根据反比例函数图象的性质,比例系数k0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可得出答案【详解】解:m20,m2+11,是正数,反比例函数的图

10、象位于第一三象限,且在每一个象限内y随x的增大而减小,(-2,y1),(-1,y2),(1,y3)都在反比例函数图象上,0y2y1,y30,y2y1y3故选:A【点睛】本题考查了反比例函数图象的性质,注意掌握对于反比例函数(k0),k0,反比例函数图象在一、三象限; k0,反比例函数图象在第二、四象限内,本题先判断出比例系数m2+1是正数是解题的关键6、D【分析】根据反比例函数的定义,反比例函数解析式的三种形式:,其中即可得出答案.【详解】A. 为正比例函数,错误;B. 为正比例函数,错误;C. 不是反比例函数,错误;D. 是反比例函数,正确;故选D.【点睛】本题考查反比例函数的判断,熟练掌握

11、函数解析式的三种形式是本题解题关键.7、D【分析】设B点坐标为(m,n),则OA=m,AB=n,根据S四边形OABCS四边形ADEF2,得到,即,则,由此即可得到答案【详解】设B点坐标为(m,n),OA=m,AB=n,S四边形OABCS四边形ADEF2,即,又点B在反比例函数上,故选D【点睛】本题主要考查了反比例函数比例系数的几何意义,解题的关键在于能够熟练掌握反比例函比例系数的几何意义8、D【分析】根据反比例函数的几何意义得到,如何代入解方程,再根据图象在二、四象限确定的值【详解】解:由题意得,则,解得,图象在二、四象,故选:D【点睛】本题考查了反比例函数的几何意义,解题的关键是掌握在反比例

12、函数图象中任取一点,过这一个点向轴和轴分别作垂线,与坐标轴围成的矩形的面积是定值在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变9、A【分析】根据反比例函数图象上点的坐标特征可分别计算出的值,然后比较大小即可【详解】点在函数的图象上,故选:A【点睛】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数10、C【分析】由k=20,可得反比例函数图象在第一,三象限,根据函数图象的增减性可得结果【详解】解:k=20,此函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小,x1x20,点A(

13、x1,y1),B(x2,y2)位于第三象限,y2y10,故选:C【点睛】本题考查的是反比例函数图象上点的坐标特点,熟练掌握反比例函数的增减性是解题关键二、填空题1、【解析】【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,由反比例函数解析式中,得出,的面积都为1,而为的,且与的高为同一条高,故的面积为的面积的,由的面积都为1,得出的面积,即为的值【详解】解:连接,如图所示:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即,又,与的高为同一条高,故答案为:【点睛】此题属于反比例函数的综合题,涉及的

14、主要知识有:反比例函数中k的几何意义,即过双曲线上任意一点引轴、轴垂线,所得矩形面积为;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义,图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即2、2【解析】【分析】根据反比函数的定义得出且,计算即可得出结论【详解】解:函数是关于的反比例函数,且,m2或2,且,m2故答案为:2【点睛】本题考查了反比例函数的定义,判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为(k为常数,k0)或(k为常数,k0)3、减小【解析】【分析】利用待定系数法求出,再根据值的

15、正负确定函数值的增减性【详解】解:反比例函数(是常数,)的图象经过点,所以,所以这个函数图象在一三象限,在每个象限内的值随值的增大而减小故答案为:减小【点睛】本题考查了运用待定系数法求反比例函数的表达式和反比例函数的性质,熟练掌握反比例函数的性质是解题的关键4、【解析】【分析】首先联立直线yx与双曲线求出点C和点D的坐标,然后求出CD的长度,根据题意可得当直线yx+m经过原点时四边形ACBD面积最小,求出此时A点和B点的坐标,进而可求出四边形ACBD面积的最小值【详解】解:直线yx与双曲线相交于C,D两点,联立得:,即,解得:,将,代入yx得:,直线yx+m与直线yx,如图,设AB与CD交于点

16、E,当AB的长度最小时,四边形ACBD面积最小,由直线yx+m与双曲线的图像和性质可得,当直线yx+m经过原点时,AB的长度最小,即此时m=0,直线yx,联立直线yx与双曲线,即,解得:,将,代入yx得:,故答案为:【点睛】此题考查了一次函数与反比例函数结合,四边形面积问题,解题的关键是正确分析出当直线yx+m经过原点时四边形ACBD面积最小5、【解析】【分析】根据一次函数的解析式求得点的坐标,进而待定系数法求得反比例函数解析式【详解】解:一次函数yx+2图象过A点,m1+23,A点坐标为(1,3),又反比例函数图象过A点,k133,反比例函数解析式为,故答案为【点睛】本题考查了待定系数法求反

17、比例函数解析式,求得点的坐标是解题的关键三、解答题1、(1);(2)P点的坐标为(-2,-3),(3,2),(-3,-2)【分析】(1)由平行四边形的性质结合的坐标先求解的坐标,再代入反比例函数的解析式,从而可得答案;(2)反比例函数是中心对称图形与轴对称图形,如图,过作轴于结合全等三角形的性质可得的坐标.【详解】解:(1) ABOD,点A,B的坐标分别为(0,3),(-2,0), 所以反比例函数的解析式为: (2)反比例函数的图象关于原点成中心对称, 当点P与点D关于原点对称,则OD=OP,此时点坐标为(-2,-3), 反比例函数的图象关于直线y=x对称,如图,过作轴于 则 而 由关于原点成

18、中心对称,可得 综上所述,P点的坐标为(-2,-3),(3,2),(-3,-2)故答案为:P点的坐标为(-2,-3),(3,2),(-3,-2)【点睛】本题考查的是平行四边形的性质,利用待定系数法求解反比例函数的解析式,反比例函数的性质,直线y=x的性质,掌握“反比例函数是中心对称图形与轴对称图形”是解本题的关键.2、(1)k0,理由是:反比例函数 的图象过一、三象限;(2)【分析】(1)根据反比例函数经过的象限即可判断;(2)根据反比例函数图像的增减性即可判断【详解】(1)反比例函数 的图象过一、三象限k0(2)k0反比例函数 的图象在每一象限内y随x的增大而减小,点A(-3,y1),B(-

19、2 ,y2)是该函数图象上的两点【点睛】本题考查反比例函数的性质,反比例函数的图象是双曲线;当k0,双曲线的两支分别位于第一、三象限,在每一象限内y随x的增大而减小,当k0,双曲线的两支分别位于第二、四象限,在每一象限内y随x的增大而增大3、(1),;(2);(3)或【分析】(1)先根据正方形的面积公式可得,从而可得点的坐标,再利用待定系数法即可得的值;(2)先将点代入反比例函数的解析式可得,再分点在点的右侧,点在点的左侧两种情况,分别利用矩形的面积公式即可得;(3)根据(2)的结果,求出时,的值,由此即可得出答案【详解】解:(1)正方形的面积为9,将点代入得:;(2)由(1)得:反比例函数的

20、解析式为,将点代入得:,由题意,分以下两种情况:如图,当点在点的右侧,即时,则,;如图,当点在点的左侧,即时,则,综上,关于的函数关系式为;(3)当时,解得,则,即此时点的坐标为;当时,解得,则,即此时点的坐标为;综上,点的坐标为或【点睛】本题考查了反比例函数与几何综合等知识点,较难的是题(2),正确分两种情况讨论是解题关键4、(1)m=2,n=-2;(2)y=x-1;(3)2.5【分析】(1)把A(3,m)和B(n,-3)代入反比例函数y=即可求出m、n;(2)把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解即可;(3)求出C的坐标,分别求出AOC和BOC的面积,即可求出答案【详

21、解】解:(1)把A(3,m)和B(n,-3)代入反比例函数y=得:m=,-3=,m=2,n=-2;(2)由(1)知A的坐标是(3,2),B的坐标是(-2,-3),代入一次函数y=kx+b得:,解得:k=1,b=-1,一次函数的解析式是y=x-1;(3)把x=0代入y=x-1得:y=-1,即OC=1,AOB的面积S=SAOC+SBOC=1|-2|+13=2.5【点睛】本题考查了反比例函数、一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积等知识点的综合运用5、(1)y,A(6,2);(2)();()30【分析】(1)根据点B的纵坐标是2,结合正比例函数可得B(6,2),利用

22、点B在反比例函数图像上,求出反比例函数的表达式为,再利用解方程组时,求出点A即可;(2)()根据直线沿y轴向上平移5个单位后得到直线l,得出直线AB与直线l1互相平行,可得平行线间的距离处处相等,两三角形底相同,高是平行线间的距离可得SABCSABD;()根据平移可得OD5,利用SABDSBOD+SAOD求出SABD,再利用SABCSABD可求【详解】解:(1)点B的纵坐标是2,即x6,B(6,2),把B的坐标代入,即k12,反比例函数的表达式为,点A是两函数的交点解方程组得A(6,2);(2)()SABCSABD;直线沿y轴向上平移5个单位后得到直线l,直线AB与直线l1互相平行,平行线间的距离处处相等,SABCSABD;故答案为:;()由题意得,OD5,SABDSBOD+SAOD=,SABCSABD30【点睛】本题考查一次函数及其应用;反比例函数及其应用;模型思想反比例函数和一次函数的交点问题,根据题意求出函数解析式是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁