2021-2022学年基础强化京改版八年级数学下册第十五章四边形综合训练试题(名师精选).docx

上传人:可****阿 文档编号:32542374 上传时间:2022-08-09 格式:DOCX 页数:22 大小:544.98KB
返回 下载 相关 举报
2021-2022学年基础强化京改版八年级数学下册第十五章四边形综合训练试题(名师精选).docx_第1页
第1页 / 共22页
2021-2022学年基础强化京改版八年级数学下册第十五章四边形综合训练试题(名师精选).docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2021-2022学年基础强化京改版八年级数学下册第十五章四边形综合训练试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化京改版八年级数学下册第十五章四边形综合训练试题(名师精选).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十五章四边形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知中,CD是斜边AB上的中线,则的度数是( )ABCD2、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中

2、心对称图形的是( )ABCD3、下列图标中,既是中心对称图形又是轴对称图形的是( )ABCD4、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD5、下列图形中,是中心对称图形的是( )ABCD6、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作DE交DG的延长线于点H,连接,那么的值为( )A1BCD27、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )A1B2C3D48、下列图形中,不是中心对称图形的是( )ABCD9、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成

3、的,其中是中心对称图形的是( )ABCD10、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C已知,点B到原点的最大距离为( )A22B18C14D10第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,与点关于原点对称的点的坐标是_2、如图,正方形ABCD的面积为18,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _3、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是_4、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 _5、若一个

4、多边形的内角和是外角和的倍,则它的边数是_三、解答题(5小题,每小题10分,共计50分)1、如图,中,(1)作点A关于的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接,连接,交于点O求证:四边形是菱形2、如图,的对角线与相交于点O,过点B作BPAC,过点C作CPBD,与相交于点P(1)试判断四边形的形状,并说明理由;(2)若将改为矩形,且,其他条件不变,求四边形的面积;(3)要得到矩形,应满足的条件是_(填上一个即可)3、如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E,CD5,DB13,求BE的长4、如图,将ABCD的边

5、AB延长到点E,使BEAB,连接DE,交边BC于点F(1)求证:BEFCDF(2)连接BD,CE,若BFD2A,求证四边形BECD是矩形5、如图,在长方形中,动点沿着的方向运动,到点运动停止,设点运动的路程为,的面积为(1)点在边上,求关于的函数表达式(2)点在边上,的面积是否发生变化?请说明理由(3)点在边上,的面积是否发生变化?如果发生变化,求出面积的变化范围,并写出关于的函数表达式;如果没有发生变化,求出此时的面积-参考答案-一、单选题1、B【分析】由题意根据三角形的内角和得到A=36,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论【详解】解:ACB=90,B

6、=54,A=36,CD是斜边AB上的中线,CD=AD,ACD=A=36.故选:B【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键2、C【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,即可判断出答案【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;B、此图形不是中心对称图形,故此选项不符合题意;C、此图形是中心对称图形,故此选项符合题意;D、此图形不是中心对称图形,故此选项不符合题意故选:C【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心3、B【分析】由题意直接根

7、据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形4、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题

8、意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键5、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图

9、形就叫做中心对称图形【详解】选项、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合6、B【分析】作辅助线,构建全等三角形,证明DAEENH,得AE=HN,AD=EN,再说明BNH是等腰直角三角形,可得结论【详解】解:如图,在线段AD上截取AM,使AM=AE, AD=AB,DM=BE,点A关于直线DE的对称点为F,ADEFDE,DA=DF=DC,DFE=A=90,1=2,DFG=90

10、,在RtDFG和RtDCG中,RtDFGRtDCG(HL),3=4,ADC=90,1+2+3+4=90,22+23=90,2+3=45,即EDG=45,EHDE,DEH=90,DEH是等腰直角三角形,AED+BEH=AED+1=90,DE=EH,1=BEH,在DME和EBH中,DMEEBH(SAS),EM=BH,RtAEM中,A=90,AM=AE, ,即=故选:B【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等7、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解

11、【详解】第一个图形是中心对称图形,又是轴对称图形,第二个图形是中心对称图形,又是轴对称图形,第三个图形不是中心对称图形,是轴对称图形,第四个图形不是中心对称图形,是轴对称图形,综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形故选:B【点睛】点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合8、C【详解】解:选项A是中心对称图形,故A不符合题意;选项B是中心对称图形,故B不符合题意;选项C不是中心对称图形,故C符合题意;选项D是中心对称图形,故D不符合题意;故选C【点睛】本题

12、考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.9、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键10、B【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原

13、点的最大距离【详解】解:取AC的中点E,连接BE,OE,OB,AOC90,AC16,OECEAC8,BCAC,BC6,BE10,若点O,E,B不在一条直线上,则OBOE+BE18若点O,E,B在一条直线上,则OBOE+BE18,当O,E,B三点在一条直线上时,OB取得最大值,最大值为18故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用二、填空题1、(-3,-1)【分析】由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.【详解】解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3

14、,-1).故答案为:(-3,-1).【点睛】本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数2、【分析】由正方形的对称性可知,PBPD,当B、P、E共线时PD+PE最小,求出BE即可【详解】解:正方形中B与D关于AC对称,PBPD,PD+PEPB+PEBE,此时PD+PE最小,正方形ABCD的面积为18,ABE是等边三角形,BE3,PD+PE最小值是3,故答案为:3【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键3、 (3,-7)【分析】根据关于原点对称的点的横坐标互

15、为相反数,纵坐标互为相反数,可得答案【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7)【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数4、6【分析】根据内角和等于外角和的2倍则内角和是720利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数【详解】解:根据题意,得(n2)1803602,解得:n6故这个多边形的边数为6故答案为:6【点睛】本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决5、【分析】根据多边形的内角和公式(n2)18

16、0以及外角和定理列出方程,然后求解即可【详解】解:设这个多边形的边数是n,根据题意得,(n2)1802360,解得n6答:这个多边形的边数是6故答案为:6【点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360三、解答题1、(1)见解析;(2)见解析【分析】(1)作BD的垂直平分线,再截取即可;(2)先证明三角形全等,然后根据全等三角形的性质可得:,依据菱形的判定定理即可证明【详解】(1)解:如图所示,作BD的垂直平分线,再截取,点即为所求(2)证明:如图所示:,在与ADO中,;,又,四边形是菱形【点睛】本题考查了尺规作图和菱形的证明,

17、解题关键是熟练运用尺规作图方法和菱形的判定定理进行作图与证明2、(1)平行四边形,理由见解析;(2)四边形的面积为24;(3)AB=BC或ACBD等(答案不唯一)【分析】(1)利用平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可证明(2)利用矩形的性质,得到对角线互相平分,进而证明四边形是菱形,分别求出菱形的对角线长度,利用对角线乘积的一半,求解面积即可(3)添加的条件只要可以证明即可得到矩形【详解】解:(1)四边形BPCO是平行四边形,BPAC,CPBD,四边形BPCO是平行四边形 (2)连接OP 四边形ABCD是矩形,OB=BD,OC=AC,AC=BD,ABC=90,OB=OC

18、 又四边形BPCO是平行四边形,BPCO是菱形 OPBC.又ABBC,OPAB.又ACBP,四边形是平行四边形,OP=AB=6. S菱形BPCO= (3)AB=BC或ACBD等(答案不唯一)当AB=BC时,为菱形,此时有:,利用含有的平行四边形为矩形,即可得到矩形,当ACBD时,利用含有的平行四边形为矩形,即可得到矩形【点睛】本题主要是考查了平行四边形、矩形和菱形的判定和性质,熟练掌握特殊四边形的判定和性质,是求解该类问题的关键3、【分析】由矩形的性质可知ABDC,AC90,由翻折的性质可知ABBF,AF90,于是可得到FC,BFDC,然后依据AAS可证明DCEBFE,依据勾股定理求得BC的长

19、,由全等三角形的性质可知BEDE,最后再EDC中依据勾股定理可求得ED的长,从而得到BE的长【详解】解:四边形ABCD为矩形,ABCD,AC90由翻折的性质可知FA,BFAB,BFDC,FC在DCE与BEF中,DCEBFE在RtBDC中,由勾股定理得:BCDCEBFE,BEDE设BEDEx,则EC12x在RtCDE中,CE2CD2DE2,即(12x)252x2解得:xBE【点睛】本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x的方程是解题的关键4、(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质可得ABCD且AB=CD,进而证明BEF=FDC,FBE=

20、FCD, ASA证明BEFCDF.(2)根据等边对等角证明FD=FC,进而证明,根据对角线相等的平行四边形是矩形即可证明【详解】(1)四边形ABCD为平行四边形,ABCD且AB=CD.BE=AB,BECD且BE=CD.BEF=FDC,FBE=FCD,BEFCDF.(2)BECD且BE=CD.四边形BECD为平行四边形, DF=DE,CF=BC, 四边形ABCD为平行四边形,FCD=A,BFD=FCD+FDC,BFD=2A,FDC=FCD,FD=FC.又DF=DE,CF=BC,BC=DE,BECD是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,掌握平行四边形

21、的性质与判定是解题的关键5、(1);(2)的面积不发生变化,理由见解析;(3)的面积发生变化,【分析】(1)由题意可求出的长,利用三角形的面积公式即可得到求与的关系式;(2)当点在上运动时,的面积不发生改变,过点作于点,利用三角形的面积公式可得的面积为18,是个定值;(3)先求出的长,再利用三角形的面积公式可得与的函数关系式,然后利用点在上可得出的范围,由此即可得出面积的变化范围【详解】解:(1)在长方形中,由题意知,当点在边上时,且,;(2)的面积不发生变化理由如下:如图,过点作于点,则,是一个定值,所以的面积不发生变化;(3)的面积发生变化,求解过程如下:当点在边上时,且,即【点睛】本题考查了一次函数的几何应用、长方形的性质等知识点,熟练掌握一次函数的求解方法是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁