《北师大版七年级数学下册期末综合练习-(A)卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《北师大版七年级数学下册期末综合练习-(A)卷(含答案详解).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 北师大版七年级数学下册期末综合练习 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明的袋子中装有4个黑球,1个白球,每个球除颜色外都相同,
2、从中任意摸出1个球则下列叙述正确的是()A摸到黑球是必然事件B摸到白球是不可能事件C模到黑球与摸到白球的可能性相等D摸到黑球比摸到白球的可能性大2、下列在线学习平台的图标中,是轴对称图形的是()ABCD3、小明把一副含有45,30角的直角三角板如图摆放其中CF90,A45,D30,则a+等于( )A180B210C360D2704、下列计算正确的是( )ABCD5、从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是( )A物体B速度C时间D空气6、在一些美术字中,有的汉字是轴对称图形下面4个汉字中,可以看作是轴对称图形的是()A吉B祥C
3、如D意7、如图,ABCDEF,点B、E、C、F在同一直线上,若BC7,EC4,则CF的长是( )A2B3C4D78、一个不透明的袋子中有2个红球,3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是红球的概率为( )ABCD9、下列运算一定正确的是( )ABCD10、如图,已知AOOC,OBOD,COD=38,则AOB的度数是( ) 线 封 密 内 号学级年名姓 线 封 密 外 A30B145C150D142第卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、下面的表格列出了一个实验室的部分统计数据,表示皮球从高处落下时,弹跳高度x与下降高度y的关系:
4、y5080100150x25405075根据表格中两个变量之间的关系,则当时,_2、一个袋子中有2个红球和若干个白球,这些球除颜色外,形状、大小、质地完全相同,在看不到的情况下,随机摸出一个红球的概率是,则袋中有_个白球3、如图所示,锐角ABC中,D,E分别是AB,AC边上的点,连结BE、CD交于点F将ADC和AEB分别绕着边AB、AC翻折得到ADC和AEB,且EBDCBC,若BAC42,则BFC的大小是 _4、如图,直线AD为ABC的对称轴,BC=6,AD=4,则图中阴影部分的面积为_5、小明制作了张卡片,上面分别写了一个条件:;从中随机抽取一张卡片,能判定是菱形的概率是_6、如图,在ABC
5、中,ACB90,AC8,BC10,点P从点A出发沿线段AC以每秒1个单位长度的速度向终点C运动,点Q从点B出发沿折线BCCA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发分别过P、Q两点作PEl于E,QFl于F,当PEC与QFC全等时,CQ的长为_7、如图,线段AC与BD相交于点O,AD90,要证明ABCDCB,还需添加的一个条件是_(只需填一个条件即可)8、如图,AD是EAC的平分线,ADBC,B40,则DAC的度数为_9、若,则=_ 线 封 密 内 号学级年名姓 线 封 密 外 10、如图,在RtABC中,C90,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点
6、C重合,若EPF45,连接EF,当AC6,BC8,AB10时,则CEF的周长为 _三、解答题(5小题,每小题8分,共计40分)1、某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品下表是此次活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298604落在“可乐”区域的频率0.60.610.60.590.604(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近 ,假如你去转动该
7、转盘一次,你获得“可乐”的概率约是 ;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?2、某地移动公司的通话时间(分)和需要的电话费(元)之间有如下表所示的关系:通话时间/分1234567电话费/元04081216202428(1)上面表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)用x表示通话时间,用y表示电话费,请写出随着x的变化,y的变化趋势是什么?3、先化简,再求值:,其中,4、端午节吃粽子是中华民族的传统习俗.据了解,甲厂家生产,三个品种的盒装粽子,乙厂家生产,两个品种的盒装粽子.端午节前,某商场在甲、乙两个厂家中各选购一个品种的盒
8、装粽子销售.(1)试用画树状图或列表的方法写出所有选购方案.(2)求甲厂家的品种粽子被选中的概率.5、如图1,AM为ABC的BC边的中线,点P为AM上一点,连接PB(1)若P为线段AM的中点设ABP的面积为S1,ABC的面积为S,求的值;已知AB5,AC3,设APx,求x的取值范围(2)如图2,若ACBP,求证:BPMCAM 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、D【分析】先求出总球的个数,再根据概率公式分别求出摸到黑球和白球的概率,然后进行比较即可得出答案【详解】解:一个不透明的袋子中装有4个黑球,1个白球,每个球除颜色外都相同,摸到黑球和摸到白球都是随机事
9、件,故A、B不符合题意;共有4+15个球,摸到黑球的概率是,摸到白球的概率是,摸到黑球的可能性比白球大;故选:D【点睛】此题考查了可能性的大小,解题关键是明确可能性等于所求情况数与总情况数之比2、B【分析】根据轴对称图形定义进行分析即可如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:选项A,C,D都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项B能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形故选:B【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键
10、是寻找对称轴,图形两部分折叠后可重合3、B【分析】已知,得到,根据外角性质,得到,再将两式相加,等量代换,即可得解;【详解】解:如图所示,;故选D【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键4、A【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方法则:底数不变,指数相乘进行计算即可【详解】A、,故原题计算正确;B、,故原题计算错误;C、,故原题计算错误;D、,故原题计算
11、错误;故选:D【点睛】此题主要考查了合并同类项、同底数幂的乘法、积的乘方、幂的乘方,关键是掌握各计算法则5、C【分析】根据函数的定义解答【详解】解:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数故选C【点睛】本题考查了常量与变量,关键是掌握函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数6、A【分析】根据轴对称的定义去判断即可【详解】吉是轴对称图形,A符合题意;祥不是轴对称图形,B不符合题意;如不是轴对称图形,C不符合题意;意不是轴对称图形,D不符合题意;故选A【点睛】
12、本题考查了轴对称图形,熟练掌握轴对称图形的定义即一个图形沿着某条直线折叠,直线两旁的图形能完全重合,是解题的关键7、B【分析】根据全等三角形的性质可得,根据即可求得答案 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:ABCDEF,点B、E、C、F在同一直线上,BC7,EC4,故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键8、D【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】解:根据题意可得:个不透明的袋子中有2个红球、3个黄球和4个蓝球,共9个,从袋子中随机摸出一个球,它是红色球的概率为 ,故选:D
13、【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)9、C【分析】根据幂的乘方运算以及零指数幂、负整数指数幂、同底数幂的乘除法运算法则计算即可求解【详解】解:A、,故选项错误;B、,故选项错误;C、,故选项正确;D、,故选项错误故选:C【点睛】此题主要考查了整式的混合运算,涉及幂的乘方运算以及零指数幂、负整数指数幂、同底数幂的乘除法运算,正确掌握相关运算法则是解题关键10、D【分析】根据垂直的定义得到AOC=DOB=90,由互余关系得到BOC=52,然后计算AOC+BOC即可【详解】解:AOOC,OBOD,AOC=DOB
14、=90,而COD=38,BOC=90-COD=90-38=52,AOB=AOC+BOC=90+52=142故选:D【点睛】本题考查了余角的概念:若两个,角的和为90,那么这两个角互余 线 封 密 内 号学级年名姓 线 封 密 外 二、填空题1、240【分析】观察表格数据可知,y是x的两倍,由此即可求解.【详解】解:第一组数据:x=25,y=50第二组数据:x=40,y=80第三组数据:x=50,y=100第四组数据:x=75,y=150由此可以得到y=2x当x=120是,y=2120=240故答案为:240.【点睛】本题主要考查了根据表格找到两个变量之间的关系,解题的关键在于能够准确找到等量关
15、系求解.2、8【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率,求出即可【详解】解:设白球x个,根据题意可得:,解得:x8,故袋中有8个白球故答案为:8【点睛】本题主要考查了根据概率的有关计算,准确计算是解题的关键3、9696度【分析】根据题意由翻折的性质和全等三角形的对应角相等、三角形外角定理以及三角形内角和定理进行分析解答【详解】解:设C=,B=,将ADC和AEB分别绕着边AB、AC翻折得到ADC和AEB,ADCADC,AEBAEB,ACD=C=,ABE=B=,BAE=BAE=42,CDB=BAC+ACD=42+,CEB=42+CDEBBC,
16、ABC=CDB=42+,ACB=CEB=42+,BAC+ABC+ACB=180,即126+=180则+=54BFC=BDC+DBE,BFC=42+=42+54=96故答案为:96【点睛】本题考查全等三角形的性质,解答本题的关键是利用“全等三角形的对应角相等”和“两直线平行,内错角相等”进行推理 线 封 密 内 号学级年名姓 线 封 密 外 4、6【分析】根据轴对称的性质判断出阴影部分的面积的和等于三角形的面积的一半,ADBC,然后根据三角形的面积列式计算即可得解【详解】解:AD所在的直线是ABC的对称轴,阴影部分的面积的和等于三角形的面积的一半,ADBC,阴影部分的面积和=(64)=6故答案为
17、:6【点睛】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等5、【分析】根据菱形的判定定理判断哪个条件合适,然后根据概率公式计算【详解】根据菱形的判断,可得;能判定平行四边形ABCD是菱形,能判定是菱形的概率是,故答案为:【点睛】本题考查了菱形的判定,概率的计算,熟练掌握概率计算公式是解题的关键6、7或3.5【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时;【详解】解:当P在AC上,Q在BC上时,ACB=90,PCE+QCF=
18、90,PEl于E,QFl于FPEC=CFQ=90,EPC+PCE=90,EPC=QCF,PEC与QFC全等,此时是PCECQF,PC=CQ,8-t=10-3t,解得t=1,CQ=10-3t=7;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC, 线 封 密 内 号学级年名姓 线 封 密 外 由题意得,8-t=3t-10,解得t=4.5,CQ=3t-10=3.5,综上,当PEC与QFC全等时,满足条件的CQ的长为7或3.5,故答案为:7或3.5【点睛】本题主要考查了全等三角形的性质,根据题意得出关于的方程是解题的关键7、答案不唯一,如:ACDB,ABDC,ABCDCB【分析】根据全等三角
19、形的判定条件求解即可【详解】解:AD90,BC=CB,只需要添加:ACDB或ABDC,即可利用HL证明ABCDCB;添加ABCDCB可以利用AAS证明ABCDCB,故答案为:答案不唯一,如:ACDB,ABDC,ABCDCB【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键8、40【分析】根据平行线的性质可得EAD=B,根据角平分线的定义可得DAC=EAD,即可得答案【详解】ADBC,B40,EAD=B=40,AD是EAC的平分线,DAC=EAD=40,故答案为:40【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行
20、,同旁内角互补;熟练掌握平行线的性质是解题关键9、90【分析】跟胡同底数幂的乘法和幂的乘方公式的逆运算,即可求解【详解】解:=,故答案是:90【点睛】本题主要考查同底数幂的乘法和幂的乘方公式,熟练掌握它们的逆运用是解题的关键10、4【分析】根据题意过点P作PMBC于M,PNAC于N,PKAB于K,在EB上取一点J,使得MJ=FN,连接PJ,进而利用全等三角形的性质证明EF=EM+EN,即可得出结论【详解】解:如图,过点P作PMBC于M,PNAC于N,PKAB于K,在EB上取一点J,使得MJFN,连接PJ 线 封 密 内 号学级年名姓 线 封 密 外 BP平分BC,PA平分CAB,PMBC,PN
21、AC,PKAB,PMPK,PKPN,PMPN,CPMCPNC90,四边形PMCN是矩形,四边形PMCN是正方形,CMPM,MPN90,在PMJ和PNF中,PMJPNF(SAS),MPJFPN,PJPF,JPFMPN90,EPF45,EPFEPJ45,在PEF和PEJ中,PEFPEJ(SAS),EFEJ,EFEM+FN,CEF的周长CE+EF+CFCE+EM+CF+FN2EM2PM,SABCBCAC(AC+BC+AB)PM,PM2,ECF的周长为4,故答案为:4【点睛】本题考查角平分线的性质定理,正方形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问三、
22、解答题1、(1)0.6;472;(2)0.6;0.6;(3)144【分析】(1)根据频率的定义计算n298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;(3)可根据获得“洗衣粉”的概率为10.60.4,然后根据扇形统计图的意义,用360乘以0.4即可得到表示“洗衣粉”区域的扇形的圆心角【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:(1)2985000.6;0.59800=472;补全表格如下:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m601
23、22240298472604落在“可乐”区域的频率0.60.610.60.60.590.604(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;故答案为:0.6;0.6;(3)(10.6)360=144,所以表示“洗衣粉”区域的扇形的圆心角约是144【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率2、(1)上表反映了时间与电话费之间的关系;通话时间是自变量,电话费是因变量;(2)y随着x的增大
24、而增大.【分析】(1)根据观察表格,可得变量,根据变量间的关系,可得自变量、因变量;(2)根据单价、时间、话费间的关系,可得函数关系式,根据正比例函数的性质,可得答案【详解】解:(1)上表反映了时间与电话费之间的关系;通话时间是自变量,电话费是因变量;(2)由表格数据可知y0.4x,y随着x的增大而增大【点睛】本题考查变量,解题关键是能够看出两个变量之间的变化关系3、,-4【分析】用乘法公式及单项式乘多项式的法则计算,再合并同类项即可化简;再所给的值代入化简后的式子中即可求得值【详解】原式当,时,原式【点睛】本题是化简求值题,考查了整式的乘法及求代数式的值,熟练运用乘法公式及单项式乘多项式是关
25、键4、(1)6种方案;(2)甲厂家的品种粽子被选中的概率是.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得甲厂家的B品种粽子被选中的情况,再利用概率公式即可求得答案【详解】解:(1)画树状图如下:一共有6种选购方案,分别是AD、AE、BD、BE、CD、CE,(2)(品种粽子被选中). 线 封 密 内 号学级年名姓 线 封 密 外 答:甲厂家的品种粽子被选中的概率是【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率所
26、求情况数与总情况数之比5、(1),;(2)证明见解析【分析】(1)由中线定义即可得,故过C点作AB平行线,过B点作AC平行线,相交于点N,连接ME,可得,AB=CE,则在中,有两边之和大于第三边,两边之和小于第三边,即可求出AE的取值范围,即,又因为P为线段AM,故(2)延长PM到点D使PM=DM,连接DC,由边角边可证明,则对应边BP=CD相等,由等角对等边即可求得 BPM=CDM,同理可得CAM=CDM,所以BPMCAM【详解】(1)由AM为ABC的BC边的中线可知由P为线段AM的中点可知则,故过C点作AB平行线,过B点作AC平行线,相交于点N,连接MEAB/CEABC=BCE,BAE=AEC,BM=MC(AAS)AB=CE在中有即得即P为线段AM的中点AM=2AP,即(2)延长PM到点D使PM=DM,连接DC,PM=DM,BMP=CMD,BM=CM(SAS)BP=CD, BPM=CDM又ACBPACCDCAM=CDMBPMCAM 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了三角形的综合问题,其中三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题;三角形三边的关系:任意两边的和都大于第三边;任意两边之和都要小于第三边等性质是解题的关键