《2022年北师大版九年级数学下册第三章-圆同步测评试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年北师大版九年级数学下册第三章-圆同步测评试卷(无超纲).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第三章 圆同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )mAB
2、CD2002、如图,为的直径,为外一点,过作的切线,切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19B38C52D763、如图,中,点O是的内心则等于( )A124B118C112D624、如图,ABC内接于O,BD为O的直径,且BD2,则DC( )A1BCD5、如图,有一个弓形的暗礁区,弓形所含的圆周角,船在航行时,为保证不进入暗礁区,则船到两个灯塔A,B的张角应满足的条件是( )ABCD6、如图,等边ABC内接于O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切O于点C,AFCF交O于点G下列结论:ADC60;DB2DEDA;若AD2,
3、则四边形ABDC的面积为;若CF2,则图中阴影部分的面积为正确的个数为()A1个B2个C3个D4个7、如图,已知中,则圆周角的度数是( )A50B25C100D308、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )A点在圆内B点在圆外C点在圆上D无法判断9、小明设计了如图所示的树型图案,它是由4个正方形、8个等边三角形和5个扇形组成,其中正方形的边长、等边三角形的边长和扇形的半径均为3,则图中扇形的弧长总和为()A8BCD1210、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,3)则经画图操作可知:ABC的外接圆的圆心坐标是( )A(2,1
4、)B(1,0)C(1,1)D(0,1)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是的直径,是的切线,切点为,交于点,点是的中点若的半径为,则阴影部分的面积为_2、已知某扇形的半径为5cm,圆心角为120,那么这个扇形的弧长为 _cm3、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若ADB12,则该正多边形的边数为 _4、如图,五边形是的内接正五边形,则的度数是_5、如图,网格中的小正方形边长都是1,则以为圆心,为半径的和弦所围成的弓形面积等于_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,的半径为1,点在上,点在内,
5、给出如下定义:连接并延长交于点,若,则称点是点关于的倍特征点(1)如图,点的坐标为若点的坐标为,则点是点关于的_倍特征点;在,这三个点中,点_是点关于的倍特征点;直线经过点,与轴交于点,.点在直线上,且点是点关于的倍特征点,求点的坐标;(2)若当取某个值时,对于函数的图象上任意一点,在上都存在点,使得点是点关于的倍特征点,直接写出的最大值和最小值2、如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m(1)求拱桥的半径(2)有一艘宽为7.8m的货船,船舱顶部为长方形,并高出水面3m,则此货船是否能顺利通过此圆弧形拱桥?并说明理由3、在平面直角坐标系xOy中,图形W上任意两点间的距离
6、有最大值,将这个最大值记为d对点P及图形W给出如下定义:点Q为图形W上任意一点,若P,Q两点间的距离有最大值,且最大值恰好为2d,则称点P为图形W的“倍点”(1)如图1,图形W是半径为1的O图形W上任意两点间的距离的最大值d为_;在点(0,2) ,(3,3),(,0)中,O的“倍点”是_;(2)如图2,图形W是中心在原点的正方形ABCD,已知点A(,1),若点E(,3) 是正方形ABCD的“倍点”,求的值;(3)图形W是长为2的线段MN,T为MN的中点,若在半径为6的O上存在MN的“倍点”,直接写出满足条件的点T所构成的图形的面积4、如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半
7、径作圆,分别与BC,AB相交于点D,E,连接AD已知(1)求证:AD是O的切线(2)若OB2,CAD30,则的长为 5、如图,在RtABC中,ACB90,D为AB的中点,以CD为直径的O分别交AC,BC于点E,F两点,过点F作FGAB于点G(1)求证:FG是O的切线;(2)若AC3,CD2.5,求FG的长-参考答案-一、单选题1、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可【详解】解:连接BD,如下图所示:与所对的弧都是 所对的弦为直径AD, 又,为等腰直角三角形,在中,由勾股定理可得: 故选:B【点睛】本题主要是考查了
8、圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路2、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.3、B【分析】根据三角形内心的性质得到OBC=ABC=25,OCB=ACB=37,然后根据三角形内角和计算BOC的度数【详解】解:点O是ABC的内心,OB平分AB
9、C,OC平分ACB,OBC=ABC=50=25,OCB=ACB=74=37,BOC=180-OBC-OCB=180-25-37=118故选B【点睛】本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角4、C【分析】根据三角形内角和定理求得,根据同弧所对的圆周角相等可得,根据直径所对的圆周角是直角,含30度角的直角三角形的性质,勾股定理即可求得的长【详解】解:为O的直径,在, BD2,故选C【点睛】本题考查了三角形内角和定理,同弧所对的圆周角相等,直径所对的圆周角是直角,勾股定理,含30度角的
10、直角三角形的性质,求得是解题的关键5、D【分析】本题利用了三角形外角与内角的关系和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半【详解】如图,AS交圆于点E,连接EB,由圆周角定理知,AEB=C=50,而AEB是SEB的一个外角,由AEBS,即当S50时船不进入暗礁区所以,两个灯塔的张角ASB应满足的条件是ASB50cosASBcos50,故选:D【点睛】本题考查三角形的外角的性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题6、C【分析】如图1,ABC是等边三角形,则ABC60,根据同弧所对的圆周角相等ADCABC60,所以判断正确
11、;如图1,可证明DBEDAC,则,所以DBDCDEDA,而DB与DC不一定相等,所以判断错误;如图2,作AHBD于点H,延长DB到点K,使BKCD,连接AK,先证明ABKACD,可证明S四边形ABDCSADK,可以求得SADK,所以判断正确;如图3,连接OA、OG、OC、GC,由CF切O于点C得CFOC,而AFCF,所以AFOC,由圆周角定理可得AOC120,则OACOCA30,于是CAGOCA30,则COG2CAG60,可证明AOG和COG都是等边三角形,则四边形OABC是菱形,因此OACG,推导出S阴影S扇形COG,在RtCFG中根据勾股定理求出CG的长为4,则O的半径为4,可求得S阴影S
12、扇形COG,所以判断正确,所以这3个结论正确【详解】解:如图1,ABC是等边三角形,ABC60,等边ABC内接于O,ADCABC60,故正确;BDEACB60,ADCABC60,BDEADC,又DBEDAC,DBEDAC,,DBDCDEDA,D是上任一点,DB与DC不一定相等,DBDC与DB2也不一定相等,DB2与DEDA也不一定相等,故错误;如图2,作AHBD于点H,延长DB到点K,使BKCD,连接AK,ABK+ABD180,ACD+ABD180,ABKACD,ABAC,ABKACD(SAS),AKAD,SABKSACD,DHKHDK,AHD90,ADH60,DAH30,AD2,DHAD1,
13、 DK2DH2,SADK,S四边形ABDCSABD+SACDSABD+SABKSADK,故正确;如图3,连接OA、OG、OC、GC,则OAOGOC,CF切O于点C,CFOC,AFCF,AFOC,AOC2ABC120,OACOCA(180120)30,CAGOCA30,COG2CAG60,AOG60,AOG和COG都是等边三角形,OAOCAGCGOG,四边形OABC是菱形,OACG,SCAGSCOG,S阴影S扇形COG,OCF90,OCG60,FCG30,F90,FGCG,FG2+CF2CG2,CF,(CG)2+()2CG2,CG4,OCCG4,S阴影S扇形COG,故正确,这3个结论正确,故选C
14、【点睛】本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解7、B【分析】根据圆周角定理,即可求解【详解】解: , 故选:B【点睛】本题主要考查了圆周角定理,熟练掌握同圆(或等圆)中,同弧(或等弧)所对的圆周角等于圆心角的一半是解题的关键8、A【分析】直接根据点与圆的位置关系进行解答即可【详解】解:O的半径为5cm,点P与圆心O的距离为4cm,5cm4cm,点P在圆内故选:A【点睛】本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点
15、到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外9、C【分析】如图(见解析),先分别求出扇形、和的圆心角的度数,再利用弧长公式即可得【详解】解:如图,扇形、和的圆心角的度数均为,扇形和的圆心角的度数均为,则图中扇形的弧长总和,故选:C【点睛】本题考查了求弧长,熟记弧长公式(,其中为弧长,为圆心角的度数,为扇形的半径)是解题关键10、A【分析】首先由ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为ABC的外心【详解】解:ABC的外心即是三角形三边垂直平分线的交点,如图所示:EF与MN的交点O即为所求的ABC的外心
16、,ABC的外心坐标是(2,1)故选:A【点睛】此题考查了三角形外心的知识注意三角形的外心即是三角形三边垂直平分线的交点解此题的关键是数形结合思想的应用二、填空题1、【分析】根据题意先得出AOEDOE,进而计算出AOD=2B=100,利用四边形ODEA的面积减去扇形的面积计算图中阴影部分的面积【详解】解:连接EO、DO,点E是AC的中点,O点为AB的中点,OEBC,AOE=B,EOD=BDO,OB=OD,B=BDO,AOE =EOD,在AOE和DOE中,AOEDOE,点E是AC的中点,AE=AC=2.4,AOD=2B=250=100,图中阴影部分的面积=222.4-=.故答案为:.【点睛】本题考
17、查切线的性质以及圆周角定理和扇形的面积公式和全等三角形判定性质,注意掌握圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系2、【分析】根据弧长公式代入求解即可【详解】解:扇形的半径为5cm,圆心角为120,扇形的弧长故答案为:【点睛】此题考查了扇形的弧长公式,解题的关键是熟练掌握扇形的弧长公式:,其中n是扇形圆心角的度数,r是扇形的半径3、15【分析】根据圆周角定理可得正多边形的边AB所对的圆心角AOB24,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案【详解】解:如图,设正多边形的外接圆为O,连接OA,OB,ADB12,AOB2ADB24
18、,而3602415,这个正多边形为正十五边形,故答案为:15【点睛】本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提4、【分析】根据圆内接正五边形的定义求出COD,利用三角形内角和求出答案【详解】解:五边形是的内接正五边形,COD=,OC=OD,=,故答案为:【点睛】此题考查了圆内接正五边形的性质,三角形内角和定理,同圆的半径相等的性质,熟记圆内接正五边形的性质是解题的关键5、【分析】根据勾股定理求出半径AO的长度,然后根据弓形面积扇形OAB的面积-三角形OAB的面积,求解即可【详解】解:由勾股定理得,由网格的性质可得,是
19、等腰直角三角形,和弦所围成的弓形面积故答案为:【点睛】此题考查了网格的特点和性质,勾股定理,扇形面积公式等知识,解题的关键是正确分析出弓形面积扇形面积-三角形OAB的面积三、解答题1、(1);(,);(2)k的最小值为,k有最大值为【分析】(1)先求出AP,AB的长,然后根据题目的定义求解即可;先求出,即可得到,假设点是点A关于O的倍特征点,得到,则不符合题意,同理可以求出,假设点是点A关于O的倍特征点,得到,可求出点F的坐标为(0,-1),由点的坐标为(,0),得到,则,则点不是点A关于O的倍特征点;设直线AD交圆O于B,连接OE,过点E作EFx轴于F,先求出E是AB的中点,从而推出EOA=
20、30,再求出,即可得到点E的坐标为(,);(2)如图所示,设直线与x轴,y轴的交点分别为C、D过点N作NPCD交CD于P,交圆O于B,过点O作直线EFCD交圆O于E,F即可得到,由,可得,可以推出当的值越大,k的值越大,则当AM=BP,MN=NP时,k的值最小,即当A与E重合,N于F重合时,k的值最小,由此求出最小值即可求出最大值【详解】解:(1)A点坐标为(1,0),P点坐标为(,0),B点坐标为(-1,0),故答案为:;的坐标为(0,),A点坐标为(1,0),假设点是点A关于O的倍特征点,不符合题意,点不是点A关于O的倍特征点,同理可以求出,假设点是点A关于O的倍特征点,即为AF的中点,点
21、F的坐标为(0,-1),点F(0,-1)在圆上,点是点A关于O的倍特征点,点的坐标为(,0),点不是点A关于O的倍特征点,故答案为:;如图所示,设直线AD交圆O于B,连接OE,过点E作EFx轴于F,点E是点A关于O的倍的特征点,E是AB的中点,OEAB,EAO=60,EOA=30,点E的坐标为(,);(2)如图所示,设直线与x轴,y轴的交点分别为C、D过点N作NPCD交CD于P,交圆O于B,过点O作直线EFCD交圆O于E,F,当k越大时,的值越小,的值越大,当的值越大,k的值越大,当AM=BP,MN=NP时,k的值最小,当A与E重合,N于F重合时,k的值最小,C、D是直线与x轴,y轴的交点,C
22、(1,0),D点坐标为(0,1),OC=OD=1,OGCD,k的最小值为,当N在E点,A在F点时,k有最大值为【点睛】本题主要考查了坐标与图形,一次函数与坐标轴的交点问题,含30度角的直角三角形的性质,垂径定理等等,解题的关键在于能够正确理解题意进行求解2、(1)6.5米;(2)不能顺利通过,理由见解析【分析】(1)设圆心为O,连接OC,OB,拱桥的半径r米,作出相应图形,然后在RtODB中,利用勾股定理求解即可得;(2)考虑当弦长为7.8时,利用(1)中结论,可得弦心距,即可得出结论【详解】(1)如图所示,设圆心为O,连接OC,OB,拱桥的半径r米,在RtODB中,解得米;(2)当弦长为7.
23、8时,弦心距此货船不能顺利通过此圆弧形拱桥【点睛】题目主要考查圆的基本性质,垂径定理,求弦心距,勾股定理等,理解题意,作出相应辅助线,结合性质定理是解题关键3、(1) 2; ;(2)t的值为3或;(3)【分析】(1)根据定义解答即可;分别找出的最大值,再根据定义判断即可;(2) 如图所示,正方形ABCD上的任意两点间距离的最大值为若点E(t,3)是正方形ABCD的“倍点”,则点E到ABCD上的点的最大距离恰好为 分, 和分别讨论即可求解;(3)分线段MN在内部和在外部两种情况讨论即可.【详解】(1)圆上两点之间的最大距离是直径2,根据定义可知d= 2,故答案为:2; 由图可知,故不是图形W的“
24、倍点”; ,故不是图形W的“倍点”;,当Q(1,0)时,=2d,故P为图形W的“倍点”;故答案为:;(2)如图所示,正方形ABCD上的任意两点间距离的最大值为依题意,若点E(t,3)是正方形ABCD的“倍点”,则点E到ABCD上的点的最大距离恰好为 当时,点E到ABCD上的点的最大距离为EC的长 取点H(1,3),则CHEH且CH=4,此时可求得EH=4,从而点E的坐标为,即;当时,点E到ABCD上的点的最大距离为ED的长由对称性可得点E的坐标为,即当时,显然不符合题意综上,t的值为3或 (3)MN上d=2,2d=4,当线段MN在内部时,T组成的图形为半径为4的圆,当线段MN在外部时,T组成的
25、图形为半径为8的圆,故点T所构成的图形的面积为或.【点睛】此题考查考查了一次函数的性质,图形上两点间的“极大距离”等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题4、(1)见解析;(2)【分析】(1)连接OD,由OD=OB,利用等边对等角得到,再由已知角相等,等量代换得到1=3,求出4为90,即可得证;(2)首先根据题意得到,进而求出的度数,然后利用扇形的弧长公式求解即可【详解】(1)证明:连接,在中,则为圆的切线;(2)CAD30,由(1)可得,OB2,【点睛】此题考查了切线的判定与性质,扇形的弧长公式,熟练掌握切线的判定与性质以及扇形的弧长公式是解本题的关键5、(
26、1)证明见解析;(2)【分析】(1)如图,连接OF,根据直角三角形的性质得到CDBD,得到DBCDCB,根据等腰三角形的性质得到OFCOFC,得到OFCDBC,推出OFG90,即可求解;(2)连接DF,根据勾股定理得到BC,根据圆周角定理得出DFC90,根据三角形函数的定义即可得出结论【详解】(1)证明:如图,连接OF,ACB90,D为AB的中点,CDBD,DBCOCF,OFOC,OFCOCF,OFCDBC,OFDB,OFG+DGF180,FGAB,DGF90,OFG90,OF为半径,FG是O的切线;(2)解:如图,连接DF,CD2.5,AB2CD5,BC,CD为O的直径,DFC90,FDBC,DBDC,BFBC2,sinABC,即,FG【点睛】本题主要考查了切线的判定与性质,等腰三角形的性质,勾股定理,正弦的定义,准确分析计算是解题的关键