《2022中考特训:人教版初中数学七年级下册第九章不等式与不等式组同步测试试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2022中考特训:人教版初中数学七年级下册第九章不等式与不等式组同步测试试卷(名师精选).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第九章不等式与不等式组同步测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若关于x的分式方程+1有整数解,且关于y的不等式组恰有2个整数解,则所有满足条件的整数a的值之积是()A0B24C72D122、若整数a使得关于x的方程的解为非负数,且使得关于y的一元一次不等式组至少有3个整数解则所有符合条件的整数a的和为( )A23B25C27D283、如果,那么下列不等式中正确的是( )ABCD4、已知ab,则下列选项不正确是( )AacbcBab0CDac2bc25、若|m
2、1|+m1,则m一定()A大于1B小于1C不小于1D不大于16、若不等式(a+1)x2的解集为x,则a的取值范围是( )Aa1Ba1Da-17、下列说法中,正确的是( )Ax3是不等式2x1的解Bx3是不等式2x1的唯一解Cx3不是不等式2x1的解Dx3是不等式2x1的解集8、不等式组的解集在数轴上表示正确的是( )ABCD9、都是实数,且ab+xB-a-bC3a3bD10、若0m1,则m、m2、的大小关系是( )Amm2Bm2mCmm2Dm2m二、填空题(5小题,每小题4分,共计20分)1、假设ab,请用“”或“”填空(1)a-1_b-1; (2)2a_2b;(3)_; (4)a+1_b+1
3、2、已知,则x的取值范围是_3、不等式的解是_4、已知,则的取值范围是_5、若方程组的解满足2x3y1,则k的的取值范围为 _三、解答题(5小题,每小题10分,共计50分)1、(1)解方程组: (2)解不等式组2、解不等式组,并求出它的所有整数解的和3、(1)解不等式4x13x;(2)解不等式组4、解不等式组:,并把其解集在数轴上表示出来5、点A、B、C在数轴上表示的数a、b、c满足:(b+2)2+|c4|0,且多项式x|a+3|yaxy21是四次三项式(1)求a,b,c的值;(2)点D是数轴上的一个点(不与A、B、C重合),当D点满足CD2AD4时,求D点对应的数(3)点S为数轴上一点,它表
4、示的数为x,求|3x+a|+|xa|2|x+b|+|x+c|+|xb|的最小值,并回答这时x的取值范围是多少-参考答案-一、单选题1、D【分析】根据分式方程的解为正数即可得出a1或3或4或2或6,根据不等式组有解,即可得出1+y,找出31+2中所有的整数,将其相乘即可得出结论【详解】先解分式方程,再解一元一次不等式组,进而确定a的取值解:+1,x+x22ax2x+ax2+2(2+a)x4x 关于x的分式方程+1有整数解,2+a1或2或4且2a1或3或4或2或62(y1)+a15y,2y2+a15y2y5y1a+23y3ay1+2y+10,2y1y1+y关于y的不等式组恰有2个整数解,31+26
5、a3又a1或3或4或2或6,a3或4所有满足条件的整数a的值之积是3(4)12故选:D【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出31+2是解题的关键2、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和【详解】解:,解不等式得:,解不等式得:不等式组的解集为:,由不等式组至少有3个整数解, ,即整数a2,3,4,5,解得:,方程的解为非负数,得到符合条件的整数a为3,4,5,6,7,之和为25故选B【点睛】此题考查了解一元一次方程,以及解一元
6、一次不等式组,熟练掌握运算法则是解本题的关键3、A【分析】根据不等式的性质解答【详解】解:根据不等式的性质3两边同时除以2可得到,故A选项符合题意;根据不等式的性质1两边同时减去1可得到,故B选项不符合题意;根据不等式的性质2两边同时乘以-1可得到,故C选项不符合题意;根据不等式的性质1和2:两边同时乘以-1,再加上2可得到,故D选项不符合题意;故选:A【点睛】此题考查不等式的性质:性质一:不等式两边加减同一个数,不等号方向不变;性质二:不等式两边同乘除同一个正数,不等号方向不变;性质三:不等式两边同乘除同一个负数,不等号方向改变4、C【分析】由题意直接根据不等式的性质对各个选项进行分析判断即
7、可【详解】解:Aab,a+cb+c,故本选项不符合题意;Bab,abbb,ab0,故本选项不符合题意;Cab,故本选项符合题意;Dab,c20,ac2bc2,故本选项不符合题意;故选:C【点睛】本题考查不等式的性质,能够正确利用不等式的性质是解题的关键,注意不等式两边同时乘除一个负数要改变不等号的方向5、D【分析】先将绝对值等式移项变形为|m1|1 m,利用绝对值的非负性质列不等式1 m0,解不等式即可【详解】解:|m1|+m1,|m1|1 m,|m1|0,1 m0,m1故选择D【点睛】本题考查绝对值的性质,列不等式与解不等式,掌握绝对值的性质,列不等式与解不等式方法是解题关键6、B【分析】根
8、据不等式的性质可得,由此求出的取值范围【详解】解:不等式的解集为,不等式两边同时除以时不等号的方向改变,故选:B【点睛】本题考查了不等式的性质,解题的关键是掌握在不等式的两边同时乘以(或除以)同一个负数不等号的方向改变7、A【分析】对A、B、C、D选项进行一一验证,把已知解代入不等式看不等式两边是否成立【详解】解:A、当x3时,231,成立,故A符合题意;B、当x3时,231成立,但不是唯一解,例如x4也是不等式的解,故B不符合题意;C、当x3时,231成立,是不等式的解,故C不符合题意;D、当x3时,231成立,是不等式的解,但不是不等式的解集,其解集为:x,故D不符合题意;故选:A【点睛】
9、此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题8、C【分析】根据不等式组的解集的表示方法即可求解【详解】解:不等式组的解集为故表示如下:故选:C【点睛】本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键9、C【分析】根据不等式的性质逐一判断选项,即可【详解】解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以
10、或除以同一个正数,不等号的方向不变,故D错误;故选:C【点睛】本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变10、B【分析】根据0m1,可得m越小平方越小, 1,继而结合选项即可得出答案【详解】解:0m1,可得m2m,1,可得:m2m故选:B【点睛】此题考查了不等式的性质及有理数的乘方,属于基础题,关键是掌握当0m1时,m的指数越大则数值越小,难度一般二、填空题1、 【分析】(1)根据不等式的性质:两边同时减去一个数,不等号方向不变号,即可得;(2)根据不等式的性质:两边同时乘以一个正数,不等号方向不变号,即可得;(3)根据不等式的性质:两边同时乘以一个负数,不等号
11、方向变号,即可得;(4)根据不等式的性质:两边同时加上一个数,不等号方向不变号,即可得【详解】解:(1),;(2),;(3),;(4),;故答案为:;【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的基本性质是解题关键2、【分析】直接利用绝对值的性质分析得出答案,正数的绝对值是正数,负数的绝对值是它的相反数,0的相反数是0【详解】解:,解得,故答案为:【点睛】此题主要考查了绝对值的性质,正数的绝对值是正数,负数的绝对值是它的相反数,0的相反数是0,正确掌握绝对值的性质是解题关键3、【分析】分别求得不等式的解集,然后取公共解即可【详解】解:解不等式得:解不等式得:所以不等式的解集为:故答案为
12、【点睛】此题考查了不等式组的求解,解题的关键是求解不等式的解集,然后取公共解4、【分析】根据题意可知,即得出,解出不等式即可【详解】,故答案为:【点睛】本题考查的是不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变5、#【分析】将即可得,结合题意即可求得的范围【详解】得, 2x3y1解得故答案为:【点睛】本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键三、解答题1、(1);(2)2x3【解析】【分析
13、】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)+5得:27x=23+175,解得:x=4,将x=4代入中,得:20y=17,解得:y=3,原方程组的解为 (2) ,解:解得:x2, 解得:x3, 不等式组的解集为:2x3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键2、2x,所有整数解的和是0【解析】【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数【详解】解:解不等式得,x2,解不等式得,x,不等式组的解集是2x,原不等式组的整数解是-2,1
14、,0,1,2,它的所有整数解的和是21+0+1+20【点睛】本题主要考查了一元一次不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值,一般方法是先解不等式组,再根据解集求出特殊值3、(1);(2)【解析】【分析】(1)直接移项化简即可求得(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集【详解】解:(1)4x13x;解得;(2)解不等式得:,解不等式得:不等式组的解集为【点睛】本题考查了解不等式和解不等式组,正确的计算以及求不等式组的解集是解题的关键4、1.5x1,图见解析【解析】【分析】分别求出每一个不等式的解集,根据
15、口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集最后在数轴上表示出不等式组的解集即可【详解】解: 解不等式3x45x1,得:x1.5,解不等式,得:x1,则不等式组的解集为1.5x1,将其解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,在数轴上表示出不等式组的解集,解题的关键在于能够熟练掌握求不等式组解集的方法5、(1);(2)或;(3)【解析】【分析】(1)根据非负数的性质,以及多项式的项数与次数的定义确定的值;(2)设D点对应的数为,根据题意得,分情况讨论,当时,当时,当时,化简绝对值,进而即可求得的值;(3)将(1)中的的值代入代数式,根据的值,
16、分情况讨论,当时,当时,当时,当时,当时,化简绝对值,进而求得最小值,并求得这时x的取值范围【详解】(1)(b+2)2+|c4|0,多项式x|a+3|yaxy21是四次三项式(2)由(1)可知,点A、B、C在数轴上表示的数a、b、c,设D点对应的数为则CD2AD4当时,则,解得,当时,则解得当时,则解得(舍)综上所述,D点对应的数为或(3)把代入|3x+a|+|xa|2|x+b|+|x+c|+|xb|得当时,则,原式此时最小值为当时,则,原式,当时,此时取最小值为当时,则,原式此时最小值为当时,则,原式,此时无最小值,当时,则,原式,此时无最小值综上所述,|3x+a|+|xa|2|x+b|+|x+c|+|xb|,最小值为,这时x的取值范围是【点睛】本题考查了非负数的性质,以及多项式的项数与次数的定义,数轴上的点之间的距离,化简绝对值,整式的加减,分类讨论是解题的关键