2022年强化训练北师大版七年级数学下册第五章生活中的轴对称专题测试试题(含答案及详细解析).docx

上传人:可****阿 文档编号:32533976 上传时间:2022-08-09 格式:DOCX 页数:22 大小:991.55KB
返回 下载 相关 举报
2022年强化训练北师大版七年级数学下册第五章生活中的轴对称专题测试试题(含答案及详细解析).docx_第1页
第1页 / 共22页
2022年强化训练北师大版七年级数学下册第五章生活中的轴对称专题测试试题(含答案及详细解析).docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2022年强化训练北师大版七年级数学下册第五章生活中的轴对称专题测试试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版七年级数学下册第五章生活中的轴对称专题测试试题(含答案及详细解析).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、七年级数学下册第五章生活中的轴对称专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面四个图形是轴对称图形的是( )ABCD2、下列图形中,是轴对称图形的是()ABCD3、下列在线学习平台的图标中

2、,是轴对称图形的是()ABCD4、甲骨文是我国的一种古代文字,下列甲骨文中,不是轴对称的是( )ABCD5、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”下列四个剪纸图案是轴对称图形的为( )ABCD6、在一些美术字中,有的汉字是轴对称图形下面4个汉字中,可以看作是轴对称图形的是()A吉B祥C如D意7、如图所示图形中轴对称图形

3、是( )ABCD8、下列有关绿色、环保主题的四个标志中,是轴对称图形是( )A B C D 9、下列图案中是轴对称图形的是( )ABCD10、第24届冬奥会将于2022年2月4日至20日在北京市和张家口市联合举行下面是从历届冬奥会的会徽中选取的部分图形,其中是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点关于、的对称点分别是,线段分别交、于、,cm,则的周长为_ cm2、下列图案是轴对称图形的有 _个3、在如图所示的图中补一个小正方形,使其成为轴对称图形,共有_种补法 4、如图,腰长为22的等腰ABC中,顶角A45,D为腰AB上的一

4、个动点,将ACD沿CD折叠,点A落在点E处,当CE与ABC的某一条腰垂直时,BD的长为_5、如图,AOB30,M,Q在OA上,P,N在OB上,OM1,ON,则MP+PQ+QN的最小值是_三、解答题(5小题,每小题10分,共计50分)1、如图,在1010的正方形网格中,每个小正方形的边长都为1,网格中有一个格点三角形ABC(三角形的顶点都在网格格点上)(1)在图中画出ABC关于直线l对称的ABC(要求:点A与点A、点B与点B、点C与点C相对应);(2)在(1)的结果下,设AB交直线l于点D,连接AB,求四边形ABCD的面积2、如图,已知四边形ABCD与四边形EFGH关于直线MN对称,D130,A

5、+B155,AD4cm,EF5cm(1)求出AB,EH的长度以及G的度数;(2)连接AE,DH,AE与DH平行吗?为什么?3、在边长为1个单位长度的小正方形网格中,建立平面直角坐标系,已知点O为坐标原点,点C的坐标为(3,1)(1)写出点A和点B的坐标,并在图中画出与ABC关于x轴对称的图形;(2)写出点B1的坐标,连接CB1,则线段CB1的长为 (直接写出得数)4、如图是三个55的正方形网格,请你用三种不同的方法分别把每幅图中的一个白色小正方形涂上阴影,使每幅图中的阴影部分成为一个轴对称图形5、如图,网格中的ABC与DEF为轴对称图形(1)利用网格线作出ABC与DEF的对称轴l;(2)如果每

6、一个小正方形的边长为1,请直接写出ABC的面积 -参考答案-一、单选题1、B【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据此概念进行分析【详解】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合2、A【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴

7、【详解】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意故选:A【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合3、B【分析】根据轴对称图形定义进行分析即可如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:选项A,C,D都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项B能找到这样的一条直线,使这个图形

8、沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形故选:B【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合4、D【分析】根据轴对称图形的概念分别判断得出答案【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意;故选:D【点睛】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形5、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选

9、项即可【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键6、A【分析】根据轴对称的定义去判断即可【详解】吉是轴对称图形,A符合题意;祥不是轴对称图形,B不符合题意;如不是轴对称图形,C不符合题意;意不是轴对称图形,D不符合题意;故选A【点睛】本题考查了轴对称图形,熟练掌握轴对称图形的定义即一个图形沿着某条直线折叠,直线两旁的图形能完全重合,是解题的关键7、C【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:

10、A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意;故选C【点睛】本题主要考查了轴对称图形的识别,熟知轴对称图形的定义是解题的关键8、B【分析】结合轴对称图形的概念进行求解【详解】解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意故选:B【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合9、B【分析】根据轴对称图形的概念(如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这

11、个图形叫做轴对称图形)逐一判断即可【详解】A不是轴对称图形,故该选项错误;B是轴对称图形,故该选项正确;C不是轴对称图形,故该选项错误;D不是轴对称图形,故该选项错误故选:B【点睛】本题主要考查轴对称图形,掌握轴对称图形的概念是解题的关键10、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:A、不是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项符合题意;故选B【点睛】本题主要考查了轴对称图形的定义,熟知定义是解

12、题的关键二、填空题1、8【分析】首先根据点P关于OA、OB的对称点分别是P1,P2,可得PD=P1D,PC=P2C;然后根据P1P2=8cm,可得P1D+DC+P2C=8cm,所以PD+DC+PC=8cm,即PCD的周长为8cm,据此解答即可【详解】解:点P关于OA、OB的对称点分别是P1,P2,PD=P1D,PC=P2C;P1P2=8(cm),P1D+DC+P2C=8(cm),PD+DC+PC=8(cm),即PCD的周长为8cm故答案为:8【点睛】本题考查了轴对称的性质的应用,要熟练掌握,解题的关键是判断出:PD=P1D,PC=P2C此题还考查了三角形的周长的含义以及求法的应用,要熟练掌握2

13、、2【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【详解】解:第一幅图,是轴对称图形;第二幅图不是轴对称图形;第三幅图是轴对称图形;第四幅图不是轴对称图形;故答案为:2【点睛】此题主要考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合3、4【分析】直接利用轴对称图形的性质得出符合题意的答案【详解】解:如图所示:故答案为:4【点睛】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键4、或2【分析】分两种情况:当CEAB时,设垂足为M,在RtAMC中,A45,由折叠得:ACDDCE2

14、2.5,证明BCMDCM,得到BMDM,证明MDE是等腰直角三角形,即可得解;当CEAC时,根据折叠的性质,等腰直角三角形的判定与性质计算即可;【详解】当CEAB 时,如图,设垂足为M,在RtAMC中,A45,由折叠得:ACDDCE22.5,等腰ABC中,顶角A45,BACB67.5,BCM22.5,BCMDCM,在BCM和DCM中,BCMDCM(ASA),BMDM,由折叠得:EA45,ADDE,MDE是等腰直角三角形,DMEM,设DMx,则BMx,DEx,ADxAB22,2xx22,解得:x,BD2x2;当CEAC时,如图,ACE90,由折叠得:ACDDCE45,等腰ABC中,顶角A45,E

15、A45,ADDE,ADCEDC90,即点D、E都在直线AB上,且ADC、DEC、ACE都是等腰直角三角形,ABAC22,ADAC2,BDABAD(22)(2),综上,BD的长为或2故答案为:或2【点睛】本题主要考查折叠的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,注重分类讨论思想的运用是解题的关键5、【分析】作M关于OB的对称点M,作N关于OA的对称点N,连接MN,即为MP+PQ+QN的最小值【详解】解:作M关于OB的对称点M,作N关于OA的对称点N,连接MN,即为MP+PQ+QN的最小值根据轴对称的定义可知:NOQMOB30,ONN60,ONN为等边三角形,OMM为等边三角形,

16、NOM90,在RtMON中,故答案为:【点睛】本题考查了轴对称最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键三、解答题1、(1)见解析;(2)14【分析】(1)根据轴对称图形的性质画图即可;(2)根据网格结构和割补法进行计算即可求得面积【详解】解:(1)如图,ABC即为所求作的三角形;(2)四边形ABCD的面积为:46354111=247.520.5=14【点睛】本题考查画轴对称图形,熟练掌握轴对称的性质,会利用割补法求解网格中不规则图形的面积是解答的关键2、(1);(2),理由见解析【分析】(1)先根据四边形的内角和为360和已知条件求得的度数,进而根据轴对称的性

17、质求得AB,EH的长度以及G的度数;(2)根据对称的性质可知,对称轴垂直平分对应的两点连成的线段,则,进而根据垂直于同一直线的两直线平行即可进行判断【详解】解:(1)四边形ABCD中,D130,A+B155,四边形ABCD与四边形EFGH关于直线MN对称,AD4cm,EF5cm,(2)连接AE,DH,则已知四边形ABCD与四边形EFGH关于直线MN对称,的对称点分别为,则【点睛】本题考查了轴对称的性质,四边形内角和,掌握轴对称的性质是解题的关键3、(1)A(1,3),B(-3,2),见解析;(2)(-3,-2),【分析】(1)根据平面直角坐标系直接写出点A,点B坐标,利用关于x轴对称的点的坐标

18、特征写出点A1、B1、C1的坐标,然后描点即可得到A1B1C1;(2)写出B1的坐标,运用勾股定理可求出CB1的长【详解】解:(1)A(1,3),B(-3,2),如图所示;(2)(-3,-2),的长为故答案为:【点睛】本题主要考查作图轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点4、见解析【分析】根据轴对称图形的定义求解即可轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形【详解】解:如图所示,【点睛】此题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形5、(1)见解析;(2)【分析】(1)对应点连线段的垂直平分线即为对称轴;(2)根据三角形的面积等于矩形面积减去周围三个三角形面积即可【详解】解:(1)如图,直线l即为所求;(2)SABC241222143【点睛】本题主要考查了画轴对称图形,熟练掌握画轴对称图形的关键是找到对称轴,得到对应点是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁