《强化训练北师大版九年级数学下册第一章直角三角形的边角关系综合测评试题(含解析).docx》由会员分享,可在线阅读,更多相关《强化训练北师大版九年级数学下册第一章直角三角形的边角关系综合测评试题(含解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第一章直角三角形的边角关系综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,E是正方形ABCD边AB的中点,连接CE,过点B作BHCE于F,交AC于G,交AD于H,下列说法:;点
2、F是GB的中点;SAHG=SABC其中正确的结论的序号是( )ABCD2、小金将一块正方形纸板按图1方式裁剪,去掉4号小正方形,拼成图2所示的矩形,若已知AB9,BC16,则3号图形周长为()ABCD3、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD4、已知锐角满足tan(+10)=1, 则锐角用的度数为( )A20B35C45D505、请比较sin30、cos45、tan60的大小关系()Asin30cos45tan60Bcos45tan60sin30Ctan60sin30cos45Dsin30tan60cos456、三角
3、形在正方形网格纸中的位置如图所示,则tan的值是( )A12B43C35D457、如图,在小正方形网格中,的三个顶点均在格点上,则的值为( )ABCD8、小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35,再往前走3米站在C处,看路灯顶端O的仰角为65,则路灯顶端O到地面的距离约为(已知sin350.6,cos350.8,tan350.7,sin650.9,cos650.4,tan652.1)()A3.2米B3.9米C4.7米D5.4米9、在RtABC中,C90,AC4,BC3,则下列选项正确的是()AsinABcosACcosBDt
4、anB10、的倒数是( )ABC2D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,点D是BC中点,点E、F分别在AB、AC上,连接DE、DF、EF,则EF的长为_2、如图,在RtABC中,ACB90,D是斜边AB的中点,DEAC,垂足为E,若DE2,CD,则sinDEB的值为 _3、计算:_4、如图 , 在 Rt 中, 是边 的中点, 点 在边 上, 将 沿直线 翻折, 使得点 落在同一平面内的点 处. 如果线段 交边 于点 , 当 时, 的值为_5、在ABC中,那么的长为_三、解答题(5小题,每小题10分,共计50分)1、在ABC中,ABAC,BAC,点
5、P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为,得到线段PD,连接DB,DC(1)如图1,当60时,猜想PA和DC的数量关系并说明理由;(2)如图2,当120时,猜想PA和DC的数量关系并说明理由2、如图,在ABC中,点D是BC的中点,联结AD,AB=AD,BD=4,(1)求AB的长;(2)求点C到直线AB的距离3、计算:4、计算:5、如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点A、B均在小正方形的顶点上(1)在图中,作以AB为底的等腰ABC,点C在小正方形的顶点上(2)在图中,作以AB为一边的平行四边形ABDE,点D、E在小正方形的顶点上,且满足平行
6、四边形ABDE的面积为8,则tanE -参考答案-一、单选题1、D【分析】先证明ABHBCE,得AH=BE,则,即,再根据平行线分线段成比例定理得:即可判断;设BF=x,CF=2x,则BC=x,计算FG= 即可判断;根据等腰直角三角形得:AC=AB,根据中得:即可判断;根据,可得同高三角形面积的比,然后判断即可【详解】解:四边形ABCD是正方形,AB=BC,HAB=ABC=90,CEBH,BFC=BCF+CBF=CBF+ABH=90,BCF=ABH,ABHBCE,AH=BE,E是正方形ABCD边AB的中点,BE=AB,即AH/BC,故正确;设BF=x,CF=2x,则BC=x,AH=x,故不正确
7、;四边形ABCD是正方形,AB=BC,ABC=90,AC=AB,故正确;,故正确故选D【点睛】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识点,灵活应用相关知识点成为解答本题的关键2、B【分析】设 而AB9,BC16,如图,由(图1)是正方形,(图2)是矩形,4号图形为小正方形,得到 再证明再建立方程求解,延长交于 则 再利用勾股定理求解 从而可得答案.【详解】解:如图,由题意得:(图1)是正方形,(图2)是矩形,4号图形为小正方形, 设 而AB9,BC16, 结合(图1),(图2)的关联信息可得: 整理得: 解得: 经检验:不符合题意,取 延长交于 则
8、四边形是矩形, 所以3号图形的周长为: 故选B【点睛】本题考查的是矩形的判定与性质,正方形的性质,锐角三角函数的应用,一元二次方程的应用,从(图形1)与(图形2)中的关联信息中得出图形中边的相等是解本题的关键.3、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键4、B【分析】根据特殊角的三角函数值计算即可;【详解】tan(+10)=1,且,;故选B【点睛】本题主要考查了特殊角的三角函数值,准确计算是解题的关键5、A【分
9、析】利用特殊角的三角函数值得到sin30,cos45,tan60,从而可以比较三个三角函数大小【详解】解答:解:sin30,cos45,tan60,而,sin30cos45tan60故选:A【点睛】本题主要考查了特殊角的三角函数值的应用,实数比大小,准确计算是解题的关键6、A【分析】根据在直角三角形中,正切值等于对边比上邻边进行求解即可【详解】解:如图所示,在直角三角形ABC中ACB=90,AC=2,BC=4,tan=ACBC=24=12,故选A【点睛】本题主要考查了求正切值,解题的关键在于能够熟练掌握正切的定义7、A【分析】观察题目易知ABC为直角三角形,其中AC3,BC4,求出斜边AB,根
10、据余弦的定义即可求出【详解】解:由题知ABC为直角三角形,其中AC3,BC4,AB=5,故选:A【点睛】本题考查解直角三角形知识,熟练掌握锐角三角函数的定义并能在解直角三角形中的灵活应用是解题的关键8、C【分析】过点O作OEAC于点F,延长BD交OE于点F,设DFx,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案【详解】解:过点O作OEAC于点F,延长BD交OE于点F,设DFx,tan65,OFxtan65,BF3+x,tan35,OF(3+x)tan35,2.1x0.7(3+x),x1.5,OF1.52.13.15,OE3.15+1.54.65,故选:C【点睛】本题
11、考查了锐角三角函数解直角三角形的应用,根据题意构建直角三角形是解本题的关键9、B【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出sinA,cosA,cosB和tanB即可【详解】解:由勾股定理得:,所以,即只有选项B正确,选项A、选项C、选项D都错误故选:B【点睛】本题主要是考查了锐角三角函数的定义以及勾股定理,熟练掌握每个锐角三角函数的定义,是求解该类问题的关键10、C【分析】根据cos60进行结合倒数回答即可【详解】解:由特殊角的三角函数值可知,cos60,的倒数是,故:的倒数是2故选C【点睛】本题主要考查了特殊角的三角函数值和倒数,熟练掌握特殊角的三角函数值是解答此类问题的关键
12、.二、填空题1、【分析】延长ED到G使DG=ED,连结GC,GF,过G作GHAC与H,根据点D为BC中点,得出BD=CD,先证BDECDG(SAS),可得BE=CG=3,B=GCD,得出GCH=DCG+ACB=B+ACB=60,根据30直角三角形先证可得HC=,利用锐角三角函数可求GH=cos30GC=,在RtGHF中,FG=,再证,即,根据三角函数可求即可【详解】解:延长ED到G使DG=ED,连结GC,GF,过G作GHAC与H,点D为BC中点,BD=CD,在BDE和CDG中,BDECDG(SAS),BE=CG=3,B=GCD,B+ACB=180-BAC=180-120=60,GCH=DCG+
13、ACB=B+ACB=60,在RtGCH中,HGC=90-HCG=30,HC=,GH=cos30GC=,CF=5,HF=CF-CH=5,在RtGHF中,FG=,即,在RtEFG中,故答案为【点睛】本题考查三角形全等判定与性质,三角形内角和,30直角三角形性质,锐角三角函数,勾股定理,直角三角形判定与性质,本题难度较大,综合性强,利用辅助线构造准确图形是解题关键2、【分析】由题意可得,求得、的边即可求解【详解】解:ACB90,DEAC,又D是斜边AB的中点,即,在中,在中,故答案为:【点睛】此题考查了锐角三角函数的定义,涉及了平行线分线段成比例的性质,勾股定理,解题的关键是掌握并灵活利用相关性质进
14、行求解3、【分析】分别计算绝对值、负指数和特殊角三角函数,再加减即可【详解】解:=故答案为:【点睛】本题考查了实数的混合运算,包括绝对值、负指数和特殊角三角函数,解题关键是熟记特殊角三角函数值,熟练运用负指数运算法则进行计算4、1:4【分析】过点E作EHAC与H,EIBC与I,设AC=3m,根据三角函数可求AB=,根据勾股定理,根据点D是边 的中点,得出CD=BD=2m,DG=BDsinB=,根据 沿直线 翻折,得到FDE,得出EDC=EDF,可证EIDEGD(AAS),得出ID=GD=,再证四边形HCIE为矩形HE=CI=,HECI即HECB,证明AEHABC,即可【详解】解:过点E作EHA
15、C与H,EIBC与I,设AC=3m,AB=,根据勾股定理,点D是边 的中点,CD=BD=2m,DG=BDsinB=, 沿直线 翻折,得到FDE,EDC=EDF,EIBC,EID=90=EGD,在EID和EGD中,EIDEGD(AAS),ID=GD=,CI=CD-ID=2m-,EHAC,EHC=90,HCI=ACB=90,EIC=90,EHC=HCI=EIC=90,四边形HCIE为矩形,HE=CI=,HECI即HECB,AHE=ACB,AEH=B,AEHABC,即,解得,BE=AB-AE=5m-m=4m,故答案为1:4【点睛】本题考查锐角三角函数,勾股定理,折叠性质,三角形全等判定与性质,矩形判
16、定与性质,三角形相似判定与性质,线段的比,掌握锐角三角函数,勾股定理,折叠性质,三角形全等判定与性质,矩形判定与性质,三角形相似判定与性质,线段的比是解题关键5、6【分析】根据解三角形可直接进行求解【详解】解:在ABC中,;故答案为6【点睛】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键三、解答题1、(1),理由见解析;(2),理由见解析【分析】(1)根据已知条件证明即得到;(2)过点作于,过点作,进而可得,同理可得证明进而证明,根据相似三角形的性质列出比例式即可求得【详解】(1),理由如下,是等边三角形,线段绕点P逆时针旋转后得到线段,是等边三角形,;(2)理由如下,如图,过点作于,
17、过点作,即,【点睛】本题考查了全等三角形的性质与判定,特殊角的三角函数值,等腰三角形的性质,相似三角形的性质与判定,旋转的性质,综合运用以上知识是解题的关键2、 (1) ;(2)【分析】(1) 过点A作AHBD,垂足为点H根据等腰三角形的性质求出DH,再根据,求出AH,利用勾股定理即可求出AB;(2) 过点C作CGBA,交BA的延长线于点G,根据即可求出答案【详解】解:(1)过点A作AHBD,垂足为点HAB=AD, BH=HD=BD=2 点D是BC的中点, BD=CDBD=4,CD=4HC=HD+ CD=6 , , (2)过点C作CGBA,交BA的延长线于点G , 点C到直线AB的距离为【点睛
18、】本题考查了等腰三角形的性质,勾股定理以及锐角的三角比,熟练掌握锐角的三角比是解题的关键3、【分析】先进行绝对值的化简,代入特殊角的三角函数值运算,然后合并【详解】解:原式=,=,=【点睛】本题考查了绝对值的性质,特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值4、2【分析】原式利用负整数指数幂法则,绝对值、二次根式性质,以及特殊角的三角函数值计算即可求出值【详解】解:原式,【点睛】本题考查了实数的运算,解题的关键是熟练掌握运算法则5、(1)见解析;(2)【分析】(1)构造正方形,找对边中点连线与网格交点即为点C,连接AC,BC即可;(2)先找出面积为4的点D,再构造平行四边形,过D作交于点M,由等面积法求出DM,由勾股定理求出EM,即可求出【详解】(1)如图所示,即为所作等腰;(2)如图,即为所作平行四边形ABDE的面积为8;过点D作交于点M,由图可得:,即,故答案为:【点睛】本题考查等腰三角形的定义以及解直角三角形,根据题意作出图形是解题的关键