《2021-2022学年度京改版八年级数学下册第十五章四边形课时练习试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度京改版八年级数学下册第十五章四边形课时练习试题(含详细解析).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十五章四边形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,ABC90,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线
2、上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D402、如图,在中,ACB90,AB10,CD是AB边上的中线,则CD的长是( )A20B10C5D23、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A6B6.5C10D134、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D45、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BECF2,CE与DF交于点
3、H,点G为DE的中点,连接GH,则GH的长为()ABC4.5D4.36、下列图形中,是中心对称图形的是()ABCD7、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形8、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )ABCD9、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致下列窗户图案中,是中心对称图形的是( )ABCD10、已知正多边形的一个外角等于45,则该正多边形的内角和为()A135B360C1080D1440第卷(非选择题 70分)二
4、、填空题(5小题,每小题4分,共计20分)1、如图,平面直角坐标系中,有,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为_2、如图,在菱形纸片ABCD中,AB2,A60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cosEFG的值为_3、如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB6cm,BC8cm,则EF_cm4、如图,矩形ABCD中,AC、BD相交于点O且AC=12,如果AOD=60,则DC=_5、若一个多边形的内角和是外角和的倍,则它的边数是_三、解答题(5小题,每小题10分,共计50
5、分)1、“三等分一个任意角”是数学史上一个著名问题今天人们已经知道,仅用圆规和直尺是不可能作出的有人曾利用如图所示的图形进行探索,其中ABCD是长方形,F是DA延长线上一点,G是CF上一点,且ACGAGC,GAFF请写出ECB和ACB的数量关系,并说明理由2、如图,四边形ABCD是平行四边形,且分别交对角线于点E、F,连接ED、BF(1)求证:四边形BEDF是平行四边形;(2)若AEEF,请直接写出图2中面积等于四边形ABCD的面积的的所有三角形3、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BEBF求证:DEFDFE4、如图,在平行四边形中,点在上由点向点出发,速度为每秒;点
6、在边上,同时由点向点运动,速度为每秒当点运动到点时,点,同时停止运动连接,设运动时间为秒(1)当为何值时,四边形为平行四边形?(2)设四边形的面积为,求与之间的函数关系式(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由5、如图,已知ABC中,D是AB上一点,ADAC,AECD,垂足是E,F是BC的中点,求证:BD2EF-参考答案-一、单选题1、C【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE/BC,DE=BC,根据平行线的性质可得ADE=ABC=90,
7、利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,ABC90,ADE=ABC=90,在MBD和EDA中,MBDEDA,MD=AE,DE=MB,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32故选:C【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定
8、与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键2、C【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长【详解】解:在中,AB=10,CD是AB边上的中线故选:C【点睛】本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半3、B【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解【详解】解:直角三角形两直角边长为5和12,斜边,此直角三角形斜边上的中线的长6.5故选:B【点睛】本题主要考查勾股定理及直角三角形斜边中线
9、定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键4、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最
10、小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键5、A【分析】根据正方形的四条边都相等可得BCDC,每一个角都是直角可得BDCF90,然后利用“边角边”证明CBEDCF,得BCECDF,进一步得DHCDHE90,从而知GHDE,利用勾股定理求出DE的长即可得出答案【详解】解:四边形ABCD为正方形,BDCF90,BCDC,在CBE和DCF中,CBEDCF(SAS),BCEC
11、DF,BCE+DCH90,CDF+DCH90,DHCDHE90,点G为DE的中点,GHDE,ADAB6,AEABBE624,GH故选A【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解6、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题
12、考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.7、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键8、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=
13、2BD=2一个直角三角形的周长为3+,AB+BC=3+-2=1+等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2ABBC=4+2,AB2+BC2=AC2=4,2ABBC=2,ABBC=,即三角形的面积为ABBC=故选:B【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出ACBC的值是解此题的关键,值得学习应用9、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;
14、故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心10、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.二、填空题1、(9,4)、(-3,4)、(3,-4)【分析】根据平行
15、四边形的性质得出AD=BO=6,ADBO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标【详解】平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),AD=BO=6,ADBO,D的横坐标是3+6=9,纵坐标是4,即D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4)故答案为:(9,4)、(-3,4)、(3,-4)【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等2、【分析】根据题意连接BE,连接AE交FG于O,如图,利用菱形的性质得BDC为等边三角形,ADC=120,再在在RtBCE中
16、计算出BE=CE=,然后证明BEAB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在RtBEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在RtAOF中利用勾股定理计算出OF,再利用余弦的定义求解即可【详解】解:连接BE,连接AE交FG于O,如图,四边形ABCD为菱形,A=60,BDC为等边三角形,ADC=120,E点为CD的中点,CE=DE=1,BECD,在RtBCE中,BE=CE=,ABCD,BEAB,设AF=x,菱形纸片翻折,使点A落在CD的中点E处,FE=FA=x,BF=2-x,在RtBEF中,(2-x)2+()2=x2,解得:
17、,在RtAOF中,故答案为: 【点睛】本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等3、#【分析】根据勾股定理求出AC,根据矩形性质得出ABC=90,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可【详解】解:四边形ABCD是矩形, ABC=90,BD=AC,BO=OD, AB=6cm,BC=8cm, 由勾股定理得:(cm), DO=5cm, 点E、F分别是AO、AD的中点, EF=OD=2.5cm, 故答案为:2.5【点睛】本题考查了矩形的性质的应用,勾股定理,三角形中位线的应用,解本题
18、的关键是求出OD长及证明EF=OD4、【分析】根据矩形的对角线互相平分且相等可得OAOD,然后判断出AOD是等边三角形,再根据勾股定理解答即可【详解】解:四边形ABCD是矩形,OAODAC126,ADC=90,AOD60,AOD是等边三角形,ADOA6,故答案为:【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出AOD是等边三角形5、【分析】根据多边形的内角和公式(n2)180以及外角和定理列出方程,然后求解即可【详解】解:设这个多边形的边数是n,根据题意得,(n2)1802360,解得n6答:这个多边形的边数是6故答案为:6【点睛】本题考查了多边形的内角
19、和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360三、解答题1、ACB3ECB,见解析【分析】由矩形的对边平行可得F=ECB,由外角等于和它不相邻的两个内角的和可得AGC=2F,那么ECBF,所以ACB=3ECB【详解】解:ACB=3ECB 理由如下:在AGF中,AGCF+GAF2FACGAGC,ACG2FAD/BC,ECBFACBACG+BCE3F故ACB3ECB【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和2、(1)证明见解析;(2)【分析】(1)先证明再证明可得从而有 于
20、是可得结论;(2)先证明再证明,从而可得结论.【详解】证明:(1) 四边形ABCD是平行四边形, ,BEF=DFE, 四边形BEDF是平行四边形.(2)由(1)得: 四边形BEDF是平行四边形, 四边形ABCD是平行四边形,SADF=SDEC=SABF=SBEC=13SABCD.【点睛】本题考查的是平行四边形的判定与性质,熟练的运用一组对边平行且相等的四边形是平行四边形是证明的关键,第(2)问先确定面积为平行四边形ABCD的的三角形是解题的关键.3、见解析【分析】根据菱形的性质可得AB=BC=CD=AD,A=C,再由BE=BF,可推出AE=CF,即可利用SAS证明ADECDF得到DE=DF,则
21、DEF=DFE【详解】解:四边形ABCD是菱形,AB=BC=CD=AD,A=C,BE=BF,AB-BE=BC-BF,即AE=CF,ADECDF(SAS),DE=DF,DEF=DFE【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质4、(1);(2)yS四边形ABPQ2t32(0t8);(3)t8,;(4)当t4或或时,为等腰三角形,理由见解析【分析】(1)利用平行四边形的对边相等AQBP建立方程求解即可;(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;(3)利用面积关系求出t,即可求出DQ,进而判断出DQPQ
22、,即可得出结论;(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论【详解】解:(1)在平行四边形中,由运动知,AQ16t,BP2t,四边形ABPQ为平行四边形,AQBP,16t2tt,即:ts时,四边形ABPQ是平行四边形;(2)过点A作AEBC于E,如图,在RtABE中,B30,AB8,AE4,由运动知,BP2t,DQt,四边形ABCD是平行四边形,ADBC16,AQ16t,yS四边形ABPQ(BPAQ)AE(2t16t)42t32(0t8);(3)由(2)知,AE4,BC16,S四边形ABCD16464,由(2)知,yS四边形ABPQ2t32(0t8),四边形ABPQ
23、的面积是四边形ABCD的面积的四分之三2t3264,t8;如图,当t8时,点P和点C重合,DQ8,CDAB8,DPDQ,DQCDPQ,DB30,DQP75;(4)当ABBP时,BP8,即2t8,t4;当APBP时,如图,B30,过P作PM垂直于AB,垂足为点M,BM4,解得:BP,2t,t当ABAP时,同(2)的方法得,BP,2t,t所以,当t4或 或时,ABP为等腰三角形【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQBP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题5、见解析【分析】先证明 再证明EF是CDB的中位线,从而可得结论.【详解】证明:ADAC,AECDCEEDF是BC的中点EF是CDB的中位线BD2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.