2021-2022学年最新京改版八年级数学下册第十五章四边形专项练习试题(含详细解析).docx

上传人:知****量 文档编号:28174379 上传时间:2022-07-26 格式:DOCX 页数:23 大小:323.24KB
返回 下载 相关 举报
2021-2022学年最新京改版八年级数学下册第十五章四边形专项练习试题(含详细解析).docx_第1页
第1页 / 共23页
2021-2022学年最新京改版八年级数学下册第十五章四边形专项练习试题(含详细解析).docx_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《2021-2022学年最新京改版八年级数学下册第十五章四边形专项练习试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新京改版八年级数学下册第十五章四边形专项练习试题(含详细解析).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十五章四边形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列A:B:C:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:

2、1D3:2:3:22、下列图形中,既是中心对称图形也是轴对称图形的是( )A圆B平行四边形C直角三角形D等边三角形3、如图,A+B+C+D+E+F的度数为()A180B360C540D不能确定4、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD5、如图,矩形ABCD的对角线AC和BD相交于点O,若AOD120,AC16,则AB的长为()A16B12C8D46、下列说法中,正确的是( )A若,则B901.5C过六边形的每一个顶点有4条对角线D疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查7、下列图形中,既是中心对称图形又是轴对称图形的有几个()A1个B2个C3个D4个8

3、、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是( )A1,1,2,B1,1,1C1,2,2D1,1,69、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( )ABCD10、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BECF2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()ABC4.5D4.3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、过多边形的一个顶点作对角线,可将多边形分成5个三角形,则多边形的边数是_2、如图,在正方形ABCD中,AB2,连接AC,以点C为圆心、AC长为半径画弧,点

4、E在BC的延长线上,则阴影部分的面积为 _ 3、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为_4、若点A(m,5)与点B(4,n)关于原点成中心对称,则mn_5、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _三、解答题(5小题,每小题10分,共计50分)1、如图,一次函数y= x3的图像分别与x轴、y轴交于点A,B,以线段AB为边在第一象限内作等腰直角三角形ABC,BAC=90,(1)求过B,C两点的直线的解析式(2)作正方形ABDC,求点D的坐标2、(1)如图1,ADC=120,BCD=140,DAB和CBE的平分线交于点,则AFB的度数是

5、 ;(2)如图2,若ADC=,BCD=,且,DAB和CBE的平分线交于点,则AFB= (用含,的代数式表示); (3)如图3,ADC=,BCD=,当DAB和CBE的平分线AG,BH平行时,,应该满足怎样的数量关系?请说明理由;(4)如果将(2)中的条件改为,再分别作DAB和CBE的平分线,AFB与,满足怎样的数量关系?请画出图形并直接写出结论3、(1)如图1中,A90,请用直尺和圆规作一条直线,把ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹)(2)已知内角度数的两个三角形如图2、图3所示请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数(3)一

6、个三角形有一内角为48,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为 4、如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点(1)求证:;(2)当时,在不添加辅助线的情况下,直接写出图中等于的2倍的所有角5、如图,将ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE(1)求证:四边形ABEC是平行四边形;(2)若AFC=2ADC,求证:四边形ABEC是矩形-参考答案-一、单选题1、D【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边形的判定:两组对角分别相

7、等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法2、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A圆既是中心对称图形也是轴对称图形,故此选项符合题意;B平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;C直角三角形既不是中心对称图形,也不一定是轴对称图形,不符合题意;D等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意故选:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概

8、念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合3、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】解:设BE与DF交于点M,BE与AC交于点N, , , 故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360是解题的关键4、D【分析】根据轴对称图形与中心对称图形的概念求解即可【详解】解:A是轴对称图形,不是中心对称图形,故此选项不合题意;B是轴对称图形,不是中心

9、对称图形,故此选项不合题意;C是轴对称图形,不是中心对称图形,故此选项符合题意;D是轴对称图形,也是中心对称图形,故此选项不合题意故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形5、C【分析】由题意可得AOBOCODO8,可证ABO是等边三角形,可得AB8【详解】解:四边形ABCD是矩形,AC2AO2CO,BD2BO2DO,ACBD16,OAOB8,AOD120,AOB60,A

10、OB是等边三角形,ABAOBO8,故选:C【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键6、B【分析】由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.【详解】解:若,则故A不符合题意;90故B符合题意;过六边形的每一个顶点有3条对角线,故C不符合题意;疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;故选:B【点睛】本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.7

11、、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A【点睛】本题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合8、C【分析】将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,

12、据此解答【详解】解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;B、因为1+1+14,所以能构成四边形,故该项符合题意;D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;故选:C【点睛】此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键9、C【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,即可判断出答案【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;B、此图形不是中心对称图形,故此选项不符合题意;C、此图形是中心对称图形,故此选项符合题意;D、此图形不是中心对称图形,故此选项不

13、符合题意故选:C【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心10、A【分析】根据正方形的四条边都相等可得BCDC,每一个角都是直角可得BDCF90,然后利用“边角边”证明CBEDCF,得BCECDF,进一步得DHCDHE90,从而知GHDE,利用勾股定理求出DE的长即可得出答案【详解】解:四边形ABCD为正方形,BDCF90,BCDC,在CBE和DCF中,CBEDCF(SAS),BCECDF,BCE+DCH90,CDF+DCH90,DHCDHE90,点G为DE的中点,GHDE,ADAB6,AEABBE624,GH故选A【点睛】本题主要考查了正方形的性质,全等三角形的性质与

14、判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解二、填空题1、7【分析】根据n边形从一个顶点出发可引出(n3)条对角线,可组成(n2)个三角形,依此可得n的值【详解】解:设多边形的边数为n,由题意得,n25,解得:n7,即这个多边形是七边形故答案为:7【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n2、#【分析】求出的度数,利用计算即可【详解】四边形ABCD是正方形,故答案为:【点睛】本题考查了正方形的性质和扇形面积公式,计算扇形面积时,应该先求出弧所在圆的半径以及弧所对的圆心角的度数3、16【

15、分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长【详解】四边形ABCD是菱形,且对角线相交于点O点O是AC的中点E为DC的中点OE为CAD的中位线AD=2OE=22=4菱形的周长为:44=16故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键4、【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可【详解】解:点A(m,5)与点B(4,n)关于原点成中心对称,m=4,n=-5,m+n=-5+4=-1,故答案为:-1【点睛】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟

16、知关于原点对称的点的坐标特征是解题的关键5、6【分析】根据多边形内角和公式及多边形外角和可直接进行求解【详解】解:由题意得:,解得:,该多边形的边数为6;故答案为6【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键三、解答题1、(1),(2)(3,7)【分析】(1)先根据一次函数的解析式求出A、B两点的坐标,再作CEx轴于点E,由全等三角形的判定定理可得出ABOCAE,由全等三角形的性质可知OA=CE,故可得出C点坐标,再用待定系数法即可求出直线BC的解析式;(2)由正方形的性质以及ABOCAE,同理可得ABOBDM,进而可得点D的坐标【详解】(1)一次函数y

17、=-x+3中,令x=0得:y=3,令y=0,解得x=4,B的坐标是(0,3),A的坐标是(4,0),如图,作CEx轴于点E,BAC=90,OAB+CAE=90,又CAE+ACE=90,ACE=BAO在ABO与CAE中, ,ABOCAE(AAS),OB=AE=3,OA=CE=4,OE=OA+AE=7,则点C的坐标是(7,4),设直线BC的解析式是y=kx+b(k0),根据题意得:,解得,直线BC的解析式是y=x+3(2)如图,作DMy轴于点M,四边形ABDC为正方形,由(1)知ABOCAE,同理可得:ABOBDM,DM=OB=3,BM=OA=4,OM=OB+BM=7,则点D的坐标是(3,7)【点

18、睛】本题考查的是一次函数综合题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质,正方形的性质,解题的关键是根据题意作出辅助线,构造出全等三角形2、(1)40;(2);(3)若AGBH,则+=180,理由见解析;(4),图见解析【分析】(1)利用四边形内角和定理得到DAB+ABC=360-120-140=100再利用三角形的外角性质得到F=FBE-FAB,通过计算即可求解;(2)同(1),通过计算即可求解;(3)由AGBH,推出GAB=HBE再推出ADBC,再利用平行线的性质即可得到答案;(4)利用四边形内角和定理得到DAB+ABC=360-D-BCD=360-再利用三角形的外角性

19、质得到F=MAB-ABF,通过计算即可求解【详解】解:(1)BF平分CBE,AF平分DAB,FBE=CBE,FAB=DABD+DCB+DAB+ABC=360,DAB+ABC=360-D-DCB=360-120-140=100又F+FAB=FBE,F=FBE-FAB=CBEDAB= (CBEDAB)= (180ABCDAB)=(180100)=40故答案为:40;(2)由(1)得:AFB= (180ABCDAB),DAB+ABC=360-D-DCBAFB= (180360+D+DCB) =D+DCB90=+90故答案为:; (3)若AGBH,则+=180理由如下:若AGBH,则GAB=HBEAG

20、平分DAB,BH平分CBE,DAB=2GAB,CBE=2HBE,DAB=CBE,ADBC,DAB+DCB=+=180;(4)如图:AM平分DAB,BN平分CBE,BAM=DAB,NBE=CBE,D+DAB+ABC+BCD=360,DAB+ABC=360-D-BCD=360-,DAB+180-CBE=360-,DAB-CBE=180-,ABF与NBE是对顶角,ABF=NBE,又F+ABF=MAB,F=MAB-ABF,F=DABNBE=DABCBE= (DABCBE)= (180)=90-【点睛】本题主要考查了三角形的外角性质、四边形内角和定理、平行线的性质、角平分线的定义借助转化的数学思想,将未

21、知条件转化为已知条件解题3、(1)见解析;(2)见解析;(3)108【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,作BC的垂直平分线即可确定点E,连接AE即可;(2)分别以24为底角,可分割出两个等腰三角形;(3)利用图1、2、3中三角形内角之间的关系进行判断【详解】解:(1)如图,作BC的垂直平分线交BC于E,连接AE,则直线AE即为所求;(2)如图:(3)根据(1)(2)中三个角之间的关系可知:当三角形是直角三角形时,肯定可以分割成两个等腰三角形,此时最大角为90;当一个角是另一个三倍时,也肯定可以分割成两个等腰三角形,此时最大角为99;如图3,此时最大角为108综上所述:最大角

22、为108,故答案为:108【点睛】本题主要考查垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质,熟练掌握垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质是解题的关键4、(1)证明见解析;(2)【分析】(1)先证明再证明从而可得结论;(2)证明是等边三角形,再分别求解 从而可得答案.【详解】证明(1) 平行四边形ABCD中, 点E、F分别是BC、AD的中点, (2) , 是等边三角形, 四边形是平行四边形, 而 ,所以等于的2倍的角有:【点睛】本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,平行四边形的性质,证明“是等边三角形”是解(2)的关键.5、(1)

23、证明见解析;(2)证明见解析;【分析】(1)根据平行四边形的性质得到,AB=CD,然后根据CE=DC,得到AB=EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可; (2)由(1)得的结论得四边形ABEC是平行四边形,再通过角的关系得出FA=FE=FB=FC,AE=BC,可得结论【详解】证明:(1)四边形ABCD是平行四边形, ,AB=CD, CE=DC, AB=EC, 四边形ABEC是平行四边形; (2)由(1)知,四边形ABEC是平行四边形, FA=FE,FB=FC 四边形ABCD是平行四边形, ABC=D 又AFC=2ADC, AFC=2ABC AFC=ABC+BAF, ABC=BAF, FA=FB, FA=FE=FB=FC, AE=BC, 四边形ABEC是矩形【点睛】本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁