《2021-2022学年度沪科版九年级数学下册第25章投影与视图专题测试试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度沪科版九年级数学下册第25章投影与视图专题测试试题(含答案解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第25章投影与视图专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的几何体的主视图是()ABCD2、如图所示的几何体,它的左视图是()ABCD3、如图所示的领奖台是由三
2、个长方体组合而成的几何体,则这个几何体的左视图是()ABCD4、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为( )A6B7C8D95、下列哪种光线形成的投影是平行投影()A太阳B探照灯C手电筒D路灯6、四个相同的小正方体组成的立体图形如图所示,它的主视图为( )ABCD7、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )ABCD8、如图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是()A左视图和俯视图不变B主视图和左视图不变C主视图和俯视图不变D都不变9、如图所示的工件中,该几何体的俯视图是( )A
3、BCD10、如图是从不同方向看某个立体图形所得到的平面图形,则这个立体图形是()A三棱柱B三棱锥C圆柱D圆锥第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是_2、由若干个小正方体组成的几何体的三视图如图所示,则组成这个几何体的小正方体的个数为_3、下图是由若干个相同的小正方体组合而成的一个几何体的三视图,则组成这个几何体的小正方体个数是_4、如图,AB和DE是直立在地面上的两根立柱,AB6(m),AB在阳光下的影长BC3(m),在同一时刻阳光下DE的影长EF4(m),则DE的长为_米5、如图,用小立方块搭
4、一几何体,从正面看和从上面看得到的图形如图所示,这样的几何体至少要_个立方块三、解答题(5小题,每小题10分,共计50分)1、如图是由几个相同的边长为1个单位的小立方块搭成的几何体从上面看到的形状,方格中的数字表示该位置的小立方块的个数(1)请在方格纸中分别画出从正面和左面所观察到的几何体的形状;(2)由三个不同方向所观察到的图形可知这个组合几何体的表面积为_个平方单位(包括底面积)2、如图所示是一个用小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出它的主视图与左视图3、根据要求完成下列题目(1)图中有_块小正方体(2)请在方格纸中分别画出它的左视图和俯视图
5、(画出的图都用铅笔涂上阴影)(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要_个小正方体,最多要_个小正方体4、一个几何体由大小相同的立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的立方块个数(1)在所给的方框中分别画出该儿何体从正面,从左面看到的形状图;(2)若允许从该几何体中拿掉部分立方块,使剩下的几何体从正面看到的形状图和原几何体从正面看到的形状图相同,则最多可拿掉 个立方块5、一个几何体的三种视图如图所示,(1)这个几何体的名称是_,其侧面积为_;(2)在右面方格图中画出它的一种表面展开图;(3)求出左视图中A
6、B的长-参考答案-一、单选题1、A【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看,如图:故选:A【点睛】此题考查小正方体组成的几何体的三视图,正确掌握几何体三视图的画法是解题的关键2、C【分析】根据几何体的左面是一个圆环即可得左视图【详解】由于几何体的左面是一个圆环,故其左视图也是一个圆环,且小圆是实线故选:C【点睛】本题考查了三视图,根据所给几何体正确画出三视图是关键3、C【分析】左视图是从左边看得到的视图,结合选项即可得出答案【详解】解:A是俯视图,B、D不是该几何体的三视图,C是左视图故选:C【点睛】本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,
7、从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线4、B【分析】根据几何体的三视图特点解答即可【详解】解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,该几何体最少有4+2+1=7个小正方体组成,故选:B【点睛】本题考查几何体的三视图,掌握三视图的特点是解答的关键5、A【分析】中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影,根据定义逐一分析即可得到答案.【详解】解:太阳光线形成的投影是平行投影,探照灯,手电筒,路灯形成的投影是中心投影,故选A【点睛】本题考查的是平行投影与
8、中心投影的含义及应用,根据定义熟练判断中心投影与平行投影是解题的关键.6、A【分析】根据几何体的三视图解答即可【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故选:【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图7、D【分析】左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.【详解】解:该几何体从左面看到的形状图有2列,第1列看到1个正方形,第2列看到2个正方形,所以左视图是D,故选D【点睛】本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.8、A【分析】根据从正面看
9、得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,再从看到的小正方形的个数与排列方式两个方面逐一分析可得答案【详解】解:若去掉1号小正方体, 主视图一定变化,主视图中最右边的一列由两个小正方形变为一个,从上面看过去,看到的小正方形的个数与排列方式不变,所以俯视图不变,从左边看过去,看到的小正方形的个数与排列方式不变; 所以左视图不变,所以A符合题意,B,C,D不符合题意;故选:A【点睛】本题考查的是由小正方体堆砌而成的图形的三视图,掌握“三视图的含义”是解本题的关键.9、B【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:从上边看是一个同心圆,外圆是实线,内
10、圆是虚线,故选:B【点睛】本题考查了简单组合体的三视图,解题关键是掌握从上边看得到的图形是俯视图10、A【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】解:由主视图和左视图为长方形判断出是柱体,由俯视图是三角形可判断出这个几何体应该是三棱柱故选:A【点睛】本题考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为三角形就是三棱柱二、填空题1、【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可【详解】解:由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据主视图中给定数据可知圆锥的母线长是3,底面
11、圆的直径是4,圆柱的高是2,因此圆锥的侧面积为:圆柱的侧面积为:底面圆的面积为:因此这个几何体的表面积为:故答案为:【点睛】本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键2、6【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,进而判断图形的形状,即可得出小正方体的个数【详解】从俯视图看至少有4个小正方体,从主视图看至少有6个小正方体,结合左视图,则只有6个小正方体故答案为:6【点睛】本题考查了学生对三视图的掌握程度和灵活运用能力,根据三视图确定物体的形状,也考查学生空间想象能力3、5【分析】利用主视图、左
12、视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数【详解】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个故答案为:5【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键4、8【分析】连接,根据平行投影的性质得,根据平行的性质可知,利用相似三角形对应边成比例即可求出的长.【详解】解:如图,连接AC ,DF,根据平行投影的性质得DFAC,.故答案为:
13、8.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定定理以及性质是解题的关键.5、12【分析】主视图是从正面看到的,俯视图是从上面看到的,据此求解即可【详解】解:根据俯视图可得该几何体最下面一层有6个小立方块;从主视图可知最上面一层至少需要3个小立方块,中间一层至少需要3个小立方块,所以,这样的几何体最少需要3+3+612(个)小立方块;故答案为:12【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖”就更容易得到答案三、解答题1、(1)图见解析;(2)24;【分析】(1)从正面看有2列,每列小正方形数目
14、分别为2,3;从左面看有2列,每列小正方形数目分别为3,1;(2)上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,继而可得出表面积【详解】解:(1)如图所示 (2)根据从三个方向看的形状图,这个几何体的表面积为2(5+4+3)24(平方单位),故答案为:24【点睛】此题考查了从不同方向看几何体及几何体的表面积的计算,解答本题的关键是掌握立体图形的观察方法2、见解析【分析】根据简单组合体的三视图的意义和画法画出相应的图形即可【详解】这个组合体的三视图如下:【点睛】本题考查简单组合体的三视图,理解视图的定义,掌握简单组
15、合体三视图的画法是正确解答的关键3、(1)6;(2)见解析;(3)5,7【分析】(1)根据图形知图形的层数及各层的块数,相加即得;(2)根据三视图的画法解答;(3)最少时只能将竖列的两个的最上一个去掉,最多时在两个的最上加一个【详解】解:由图知,图形共有3层,最下层有3块小正方体,中间一层有2块,最上一层有1块,图中共有1+2+3=6块小正方体,故答案为:6;(2)如图:(3)如图,用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要5个,最多需要7个,故答案为:5,7【点睛】此题考查画小正方体构成的立体图形的三视图,数小正方体的个数,正确掌握立体图形
16、的三视图的画法是解题的关键4、(1)见详解;(2)6【分析】(1)根据从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图即可;(2)根据立体图形的遮挡主视图、俯视图不变在俯视图中得出拿去的小正方体的个数【详解】解:(1)从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,可画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3
17、个正方形,后行1个正方形可画出左视图该几何体从正面,从左面看到的图形如图所示:(2)拿掉后,剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉6个左列前行2个正方形,中列中行2个正方形,中列后行1个小正方形,右列中行1个正方形,共6个正方形,如图故答案为:6【点睛】本题考查简单几何体的三视图,正确想象出几何体的形状是解题关键,画三视图时注意“长对正,宽相等,高平齐”5、(1)正三棱柱,72;(2)画图见解析;(3)【分析】(1)由三视图所表现特征可知几何体为正三棱柱,正三棱柱侧面积为三个矩形,则侧面积为(2)如图所示,答案不唯一(3)中过E点作FG垂线,垂足为H,可求得FH=2,再由勾股定理即可求得FH=【详解】(1)该几何体由主视图和左视图可判断为棱柱,由俯视图可判断为正三棱柱(2)如图所示(3)如图所示,中过E点作FG垂线,垂足为H为等边三角形FH=2,EHF=EHG=90【点睛】本题考查了三视图以及勾股定理,三视图是从正面、左面、上面以平行视线观察物体所得的图形,判断三视图时应结合实物,变换角度去观察,结合空间想象能力,由三视图求几何体的侧面积或表面积时,首先要根据三视图描述几何体,再根据三视图“长对正、高平齐、宽相等”的关系和轮廓线的位置确定各个面的尺寸,然后求表面积或侧面积