《2021-2022学年度沪科版九年级数学下册第25章投影与视图章节测试试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度沪科版九年级数学下册第25章投影与视图章节测试试卷(含答案解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第25章投影与视图章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是由5个完全相同的小正方体组成的立体图形,这个立体图形的主视图是( )ABCD2、下面的三视图所对应的几何
2、体是()ABCD3、如图,是由一个圆柱体和一个长方体组成的几何体,其左视图是( )ABCD4、把7个同样大小的正方体形状的积木堆放在桌子上,从正面和左面看到的形状图都是如图所示的同样的图形,则其从上面看到的形状图不可能是()ABCD5、如图摆放的下列几何体中,左视图是圆的是( )ABCD6、如图,小明在A时测得某树的影长为8m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为()mA2B4C6D87、如图所示的支架(一种小零件)的两个台阶的高度相等,则它的左视图为( )ABCD8、如图,几何体的左视图是( )ABCD9、中国有悠久的金石文化,印信是金石文化的代表之一南北朝时期
3、的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体从正面看该几何体得到的平面图形是( )ABCD10、如图所示的几何体的俯视图是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为_厘米2、如图所示是给出的几何体从三个方向看到的形状,则这个几何体最多由_个小正方体组成3、如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的
4、长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB_米4、已知某几何体的三视图如图所示,根据图中数据求得该几何体的体积为_5、三棱柱的三视图如图所示,已知EFG中,EF=8cm,EG=12cm,EFG=45则AB的长为_cm三、解答题(5小题,每小题10分,共计50分)1、如图,这是一个由7个小立方体搭成的几何体,请你画出它的三视图2、如图,是由若干个完全相同的小正方体组成的一个几何体从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形3、如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图4、一个几何体是由若干个棱长为1c
5、m的小正方体搭成的,从左面、上面看到的几何体的形状图如图所示: (1)该几何体最少由_个小立方体组成,最多由_个小立方体组成(2)将该几何体形状固定好,当几何体体积达到最大时,画出此时的主视图并求出几何体的表面积5、如图,这个几何体是由若干个棱长为1cm的小正方体搭成的(1)请画出从正面、左面、上面看到的几何体的形状图(2)求出从正面、左面、上面看到的几何体的表面积之和是多少-参考答案-一、单选题1、B【分析】从正面看到的平面图形是主视图,根据主视图的含义逐一判断即可.【详解】解:从正面可以看到2行3列的小正方形图形,第1行1个正方形,第2行3个正方形,按1,2,1的方式排列,所以主视图是B,
6、故选B【点睛】本题考查的是三视图,掌握识别主视图是解本题的关键,注意的是能看到的棱都要画成实线,看不到的棱画成虚线.2、C【分析】根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案【详解】解:根据三视图知,组成该几何体的小正方体分布情况如下:与之相对应的C选项,故选:C【点睛】本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状3、C【分析】长方体的左视图为矩形,圆柱的左视图为矩形,据此分析即可得左视图【详解】从左面可看到一个长方形和一个长方形,且两个长方形等高故选C【点睛】本题考查了简单几何题的三视图,掌握简单几何题的三
7、视图是解题的关键4、C【分析】利用俯视图,写出符合题意的小正方体的个数,即可判断【详解】A、当7个小正方体如图分布时,符合题意,本选项不符合题意B、当7个小正方体如图分布时,符合题意,本选项不符合题意C、没有符合题意的几何图形,本选项符合题意D、当7个小正方体如图分布时,符合题意,本选项不符合题意故选:C【点睛】此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力5、D【分析】根据这几种图形的左视图即可作出判断【详解】A、长方体的左视图是长方形,故不符合题意;B、圆柱体的左视图是长方形,故不符合题意;C、圆锥体的左视图是三角形,故不符合题意;D、球体的左视图是圆,故符合
8、题意故选:D【点睛】本题考查了几何体的三视图,掌握常见几何体的三视图是关键6、B【分析】根据题意,画出示意图,易得:EDCFDC,进而可得,即DC2EDFD,代入数据可得答案【详解】解:根据题意,作EFC,树高为CD,且ECF90,ED2m,FD8m;E+F90,E+ECD90,ECDF,EDCFDC,即DC2EDFD2816,解得CD4m故选:B【点睛】本题主要考查了平行投影与相似三角形的应用,准确计算是解题的关键7、C【分析】找到从左面看所得到的图形即可,注意所有的看到的棱用实线表示,看不见的棱用虚线表示【详解】解:从左面看去,是两个有公共边的矩形,如图所示:故选:C【点睛】本题考查了三视
9、图的知识,左视图是从物体的左面看得到的视图视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上8、D【分析】根据从左边看得到的图形是左视图,可得答案【详解】根据左视图的定义可知,这个几何体的左视图是选项D,故选:D【点睛】本题考查简单组合体的三视图,解题的关键是理解三视图的定义9、D【分析】找到从正面看所得到的图形即可【详解】解:从正面看是一个正六边形,里面有2个矩形,故选D【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中10、D【分析】根据从上面看得到的图形是俯视图,可得答案【详解】从上面看得到的图形是故选D
10、【点睛】本题考查了三视图的知识,掌握从上边看得到的图形是俯视图是关键二、填空题1、【分析】由正视图可知,高是20cm,两顶点之间的最大距离为60cm,利用正六边形的性质求得底面AD,然后所有棱长相加即可【详解】根据题意,作出实际图形的上底,如图:AC,CD是上底面的两边,因为正六边形的直径为60cm,则AC=602=30(cm),ACD=120,作CBAD于点B,那么AB=ACsin60=30=15(cm),所以AD=2AB=30(cm),胶带的长至少=(cm)故答案为:【点睛】本题考查了正六边形的性质、立体图形的三视图和学生的空间想象能力;注意知道正六边形两个顶点间的最大距离求对边之间的距离
11、需构造直角三角形利用相应的三角函数求解2、11【分析】从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,从左视图可看出每一行小立方块的层数和个数,从而算出总的个数【详解】解:研究该几何体最多由多少个小正方形组成,由俯视图易得最底层小立方块的个数为5,由其他视图可知第二层有5个小立方块,第三层有1个小立方块,即如下图:那么共最多由个小立方块故答案为:11【点睛】本题考查了学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,解题的关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案3、6【分析】根据在同一时刻物高
12、和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解答【详解】解: ,当王华在CG处时,RtDCGRtDBA,即,当王华在EH处时,RtFEHRtFBA,即,CGEH1.5米,CD1米,CE3米,EF2米,设ABx,BCy,即,即2(y+1)y+5,解得:y3,则,解得,x6米即路灯A的高度AB6米【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度4、【分析】根据给出的几何体的三视图可知几何体是由圆柱体和圆锥体构成,
13、从而根据三视图的特点得知高和底面直径,代入体积公式计算即可【详解】由三视图可知,几何体是由圆柱体和圆锥体构成,圆柱和圆锥的底面直径均为2,高分别为4和1,圆锥和圆柱的底面积为,故该几何体的体积为:4+,故答案为:【点睛】本题考查了由三视图判断几何体,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形5、【分析】过点E作EQFG于点Q,根据三视图可知AB的长即为EQ的长,根据勾股定理求解即可【详解】解:过点E作EQFG于点Q,由题意可得出:EQ=ABEFG=45,EQ=FQ,EF=8cm,EQ=FQ=(cm),即AB的
14、长 cm故答案为:4【点睛】本题考查了三棱柱的三视图,得到AB的长即为EQ的长是解题的关键三、解答题1、图见解析【分析】从正面看,得到从左往右3列正方形的个数依次为3,2,1;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为2,1,1,依此画出图形即可【详解】解:如下图所示,【点睛】此题考查三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形2、见解析【分析】根据几何体的三视图画法作图【详解】解:如图,【点睛】此题考查了画小正方体组成的几何体的三视图,正确掌握几何体的三视图的画图方法是解题的关键3、见
15、解析【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形4、(1)9;14;(2)画图见解析;几何体的表面积为【分析】(1)根据左视图,俯视图,分别在俯视图上写出最少,最多两种情形的小正方体的个数即可解决问题;(2)根据立方体的体积公式即可判断,分上下,左右,前后三个方向判断出正方形的个数解决问题即可【详解】解:(1)观察图象可知:最少的情形有2311119个小
16、正方体,最多的情形有22333114个小正方体,故答案为9,14;(2)该几何体体积最大值为3314378(cm3),体积最大时的几何体的三视图如下:因此这个组合体的表面积为(966)2446(cm2),故答案为:46cm2【点睛】本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的画法是正确解答的关键5、(1)见详解;(2)14cm2【分析】(1)根据从正面看得到的图形画在第一个网格中,根据从左面看得到的图形画在第二个网格中,根据从上面看得到的图形画在第三个网格中;(2)从正面看几何体的表面积为6cm2,从左面看几何体的表面积为4cm2,从上面看几何体的表面积为4cm2,利用加
17、法运算求它们的和即可【详解】(1)从正面看得到的图形为主视图从左到右3列,左数第一列3个小正方形,第2列2个小正方形,第3列1个小正方形,下方对齐;从左面看得到的图形是左视图从左到右2列,左数第1列3个小正方形,第2列1个小正方形下方对齐;从上面看得到的图形是俯视图从左到右3列,第1列2个小正方形,第2列1个小正方形,第3列1个小正方形,上对齐; (2)从正面看几何体的表面积为6cm2,从左面看几何体的表面积为4cm2,从上面看几何体的表面积为4cm2,从正面、左面、上面看到的几何体的表面积之和6+4+4=14cm2【点睛】本题考查由正方体找出简单组合体的三视图,从不同方向看到的表面积,掌握简单组合体的三视图是解题关键