《2021-2022学年度强化训练京改版八年级数学下册第十六章一元二次方程综合练习试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练京改版八年级数学下册第十六章一元二次方程综合练习试卷(含答案解析).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十六章一元二次方程综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的方程有两个不相等的实数根,则a的值可能为( )A3B4C5D62、方程2x2-3x=2的一次项系
2、数和常数项分别是( )A3和2B-3和2C3和-2D-3和-23、已知m,n是一元二次方程的两个实数根,则的值为( )A4B3CD4、已知m,n是方程的两根,则代数式的值等于( )A0BC9D115、关于的一元二次方程的一个根是3,则的值是( )A3BC9D6、关于x的方程有两个不相等的实数根,则n的取值范围是()AnBn CnDn7、将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式根据“降次法”,已知:,且,则的值为( )ABCD8、用配方法解方程x24x1,变形后结果正确的是( )A
3、(x2)25B(x2)22C(x2)25D(x2)229、生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨如果设这两年全国生活垃圾无害化处理能力的年平均增长率为,那么根据题意可以列方程为( )ABCD10、若关于x的方程kx24x20有实数根,则实数k的取值范围是()Ak2Bk2Ck2且k0Dk2且k0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、设a,b是方程x2x20210的两个实数根,则a22ab的值为_2、下面是用配方法解关于的一元二次方程的
4、具体过程,解:第一步:第二步:第三步:第四步:,以下四条语句与上面四步对应:“移项:方程左边为二次项和一次项,右边为常数项;求解:用直接开方法解一元二次方程;配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;二次项系数化1,方程两边都除以二次项系数”,则第一步,第二步,第三步,第四步应对应的语句分别是_3、若关于x的一元二次方程的一个根是m,则的值为_4、若关于x的方程ax2+bx+c0(a0)满足ab+c0,称此方程为“月亮”方程,已知方程a2x21999ax+10(a0)是“月亮”方程,求a2+1999a+的值为 _5、若(m1)xm(m2) 12mx10是关于x的一元二次方
5、程,则m的值是_三、解答题(5小题,每小题10分,共计50分)1、用适当的方法解方程(1); (2)2、近日,广西南宁苏爷爷自家果园的上千斤皇帝柑发生蓝变(即果皮白皮层变蓝),无法正常售卖,他决定将这些皇帝柑免费寄给科研人员网友看到苏爷爷的故事,纷纷订购表示支持已知苏爷爷自家果园的皇帝柑有两种类型在售,一种是实惠装中型果实(简称“中果”),一种是豪华装大型果实(简称“大果”)(1)网友小张买了2箱中果,1箱大果,花了116元;网友小李买了1箱中果,2箱大果,花了124元求每箱中果和大果的售价分别是多少元?(2)在(1)的条件下,正常情况平均每周可销售30箱大果但为了减少库存,苏爷爷决定对大果降
6、价销售,经调查发现,一箱大果的售价每降低2元,大果的销量每周可增加5箱,如果大果每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%求每箱大果的售价应该降低多少元?3、用适当的方法解方程(1)(2)4、已知关于x的一元二次方程(1)求证:无论k取何值,该方程总有实数根;(2)已知等腰三角形的一边a为2,另两边恰好是这个方程的两个根,求k的值5、解方程:(1)(2)-参考答案-一、单选题1、A【分析】根据方程有两个不相等的实数根,判别式0,确定a的取值范围,判断选择即可【详解】方程有两个不相等的实数根,判别式0,a4,故选A【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根
7、的判别式是解题的关键2、D【分析】先将方程变形,再根据一元二次方程方程的一般形式“一元二次方程的一般形式是,其中是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项”进行解答即可得【详解】解:一次项系数为:-3,常数项为:-2,故选D【点睛】本题考查了一元二次方程的一次项系数和常数项,解题的关键是熟记一元二次方程的一般形式3、A【分析】根据方程的系数结合根与系数的关系,即可得出m+n的值,此题得解【详解】解:m、n是一元二次方程的两个实数根,m+n=4故选:A【点睛】本题考查了根与系数的关系,牢记两根之和等于-是解题的关键4、C【分析】利用方程的解的定义和一元二次方程根与系数的关
8、系,可得, ,从而得到,再代入,即可求解【详解】解:m,n是方程的两根, ,故选:C【点睛】本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若,是一元二次方程 的两个实数根,则,是解题的关键5、C【分析】把x=3代入已知方程,列出关于m的方程,通过解方程可以求得m的值【详解】解:关于的一元二次方程的一个根是3m=9故选:C【点睛】本题考查了一元二次方程的解的定义,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根6、A【分析】
9、利用判别式的意义得到0,然后解不等式即可【详解】解:根据题意得(3)4n0,解得n 故选:A【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式7、B【分析】先利用得到,再利用x的一次式表示出,则进行化简,然后解方程,从而得到的值【详解】解:根据题意,;,解得:,;故选:B【点睛】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解所以解高次方程一般要降次,即把它转化成二次方程或一次方程也有的通过因式分解来解通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键8、A【分析】方程的两边同时加上一次项系数一半的平方即可,进而即求得
10、答案【详解】解:x24x1即故选A【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键9、C【分析】设这两年全国生活垃圾无害化处理能力的年平均增长率为,根据等量关系,列出方程即可【详解】解:设这两年全国生活垃圾无害化处理能力的年平均增长率为,由题意得:,故选C【点睛】本题主要考查一元二次方程的实际应用,掌握增长率模型,是解题的关键10、B【分析】根据当时,方程是一元一次方程有实数根,当时,根据一元二次方程的定义和根的判别式的意义得到k0且=(-4)2-4 k(-2)0,然后求出两不等式组的公共部分,两种情况合并即可【详解】解:根据题意得:当时,方程是一元一次方程,此时4x20,方程有
11、实数解;当时,此方程是一元二次方程,可得k0且=(-4)2-4 k(-2)0,解得k-2且k0综上,当时,关于x的方程kx24x20有实数根,故选:B【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根上面的结论反过来也成立二、填空题1、【分析】由于a22ab(a2a)(ab),故根据方程的解的意义,求得(a2a)的值,由根与系数的关系得到(ab)的值,即可求解【详解】解:a,b是方程x2x20210的两个实数根,a2a20210,即a2a2021,ab1,
12、a22aba2aab20211,故答案为:【点睛】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形2、【分析】根据配方法的步骤:二次项系数化为1,移项,配方,求解,进行求解即可【详解】解:根据配方法的步骤可知:第一步为:二次项系数化1,方程两边都除以二次项系数;第二步为:移项:方程左边为二次项和一次项,右边为常数项;第三步为:配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;第四步为:求解:用直接开方法解一元二次方程;故答案为:【点睛】本题主要考查了配方法解一元二次方程,熟知配方法的步骤是解题的关键3、-2011【分析】由关于x的一元
13、二次方程的一个根是m,可得,再由求解即可【详解】解:关于x的一元二次方程的一个根是m,故答案为:-2011【点睛】本题考查一元二次方程的解和代数式求值,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型4、-2【分析】根据“月亮”方程的定义得出,变形为代入计算即可【详解】解:方程是“月亮”方程, 故答案为-2【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边都相等的未知数的值是一元二次方程的解利用整体代入的方法计算是解决本题的关键5、3【分析】本题根据一元二次方程的定义求解一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0由这两个条件得到相应的
14、关系式,再求解即可【详解】解:是关于x的一元二次方程,即,解得m3故答案为:3【点睛】本题主要考查了一元二次方程的定义,解一元二次方程,解题的关键在于熟知一元二次方程的定义三、解答题1、(1),(2)【分析】用因式分解法解方程即可【详解】解:(1), , , ,;(2),【点睛】本题考查了一元二次方程解法,解题关键是熟练运用因式分解法解方程2、(1)每箱中果的售价为36元,每箱大果的售价为44元;(2)每箱大果的售价应该降低4元【分析】(1)设每箱中果的售价为x元,每箱大果的售价为y元,根据“2箱中果,1箱大果,花了116元; 1箱中果,2箱大果,花了124元”列出二元一次方程组求解即可;(2
15、)根据“每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%”列出方程和不等式求解即可【详解】解:(1)设每箱中果的售价为x元,每箱大果的售价为y元,根据题意得 解得, 所以,每箱中果的售价为36元,每箱大果的售价为44元;(2)设每箱大果的售价应该降低m元,根据题意得, 解得, 解得, 所以,每箱大果的售价应该降低4元【点睛】本题本题主要考查了二元一次方程组的应用、一元一次不等式的应用以及一元二次方程的应用,正确找出等量关系是解答本题的关键3、(1),;(2)【分析】(1)提取公因式(x-2),利用因式分解法求解即可求得答案;(2)利用因式分解法求解即可求得答案【详解】解:
16、(1) , (2) 【点睛】此题考查了一元二次方程的解法注意选择适宜的解题方法是解此题的关键4、(1)证明见解析;(2)k=3【分析】(1)根据根的判别式判断即可(2)由等腰三角形性质可判断出腰长为2和底为2两种情况,即可求得两个k,将k代入抛物线解析式求得x的解,再结合三角形三边关系判断即可【详解】(1)中a=1,b=-k,c=k-1无论k取何值,该方程总有实数根(2)若2为等腰三角形的腰,则另一边也为2,即2为方程的一个根将x=2代入有4-2k+k-1=0解得k=3则方程为解得等腰三角形三边长为2,2,1,符合三角形三边关系若2为等腰三角形的底,则两根为腰且相等,有即解得k=2则方程为解得
17、等腰三角形三边长为2,1,1,1+1=2,不符合三角形三边关系,故k=2舍去综上所述k的值为3【点睛】本题考查了一元二次方程根的判别式、等腰三角形性质以及三角形三边成立的关系,易错点为第二问未验证所算三边长是否能构成等腰三角形5、(1)原方程无解;(2)【分析】(1)方程两边同乘以化成整式方程,再解一元一次方程即可得;(2)方程两边同乘以化成整式方程,再解一元二次方程即可得【详解】解:(1),方程两边同乘以,得,移项、合并同类项,得,系数化为1,得,经检验,不是分式方程的解,所以原方程无解;(2),方程两边同乘以,得,移项、合并同类项,得,因式分解,得,解得或,经检验,不是分式方程的解;是分式方程的解,所以原方程的解为【点睛】本题考查了解分式方程,熟练掌握方程的解法是解题关键需注意的是,分式方程需进行检验