《2021-2022学年度强化训练京改版八年级数学下册第十六章一元二次方程专项练习试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练京改版八年级数学下册第十六章一元二次方程专项练习试题(含答案解析).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十六章一元二次方程专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、方程的解是( )A6B0C0或6D-6或02、方程x2x0的解是()Ax0Bx1Cx10,x21Dx10,x
2、213、方程(x-1)2 = 0的根是( )Ax = - 1Bx1 = x2 = 1Cx1 =x2= - 1Dx1 = 1,x2 = -14、某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.若两次降价的百分率相同,设每次降价的百分率为x,根据题意,可列方程A128(1 - x2)= 88B88(1 + x)2 = 128C128(1 - 2x)= 88D128(1 - x)2 = 885、若一元二次方程ax2+bx+c0的系数满足ac0,则方程根的情况是()A没有实数根B有两个不相等的实数根C有两个相等的实数根D无法判断6、若m是方程x2x10的根,则2m22m2020的
3、值为( )A2022B2021C2020D20197、下列一元二次方程两实数根和为-4的是( )ABCD8、将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式根据“降次法”,已知:,且,则的值为( )ABCD9、将一元二次方程通过配方转化为的形式,下列结果中正确的是( )ABCD10、对于一元二次方程ax2bxc0(a0),有下列说法:当a0,且bac时,方程一定有实数根;若ac0,则方程有两个不相等的实数根;若abc0,则方程一定有一个根为1;若方程有两个不相等的实数根,则方程bx2ax
4、c0一定有两个不相等的实数根其中正确的有()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,设二、三两个月新注册用户每月平均增长率是x,根据题意,可列方程为_2、关于x的一元二次方程x2+bx100的一个根为2,则b的值为_3、江苏省某县去年平均房价为每平方米4000元,连续两年增长后,明年平均房价将达到每平方米5 500 元,设这两年平均房价年平均增长率为x,根据题意,所列方程是_4、设m,n分别为一元二次方程的两个实数根,则_
5、5、智能音箱是市场上最火的智能产品之一,某商户一月份销售了100个智能音箱,三月份比一月份多销售44个,设该公司二、三月销量的月平均增长率为x,则可列方程为 _三、解答题(5小题,每小题10分,共计50分)1、2021年某市轨道交通1号线经过10月份的试运营,于11月正式开通运营10月份客运量为120万人次,12月份客运量为172.8万人次(1)求1号线客运量的月平均增长率;(2)按照客运量这样的月增长率,预计1号线在2022年1月份的客运量能否突破200万人次2、(1)计算:(2)解方程:3、在实数范围内定义一种运算“*”,其运算法则为如:根据这个法则,(1)计算:_;(2)判断是否为一元二
6、次方程,并求解(3)判断方程的根是否为,并说明理由4、已知关于的一元二次方程(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于2,求的取值范围5、(1)用配方法解方程:(2)当岚岚用因式分解法解一元二次方程时,她是这样做的:解:原方程可以化简为第一步两边同时除以得 第二步系数化为1,得第三步岚岚的解法是不正确的,她从第_步开始出现了错误请完成这个方程的正确解题过程-参考答案-一、单选题1、C【分析】根据一元二次方程的解法可直接进行求解【详解】解:,解得:;故选C【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键2、D【分析】因式分解后求解即可.【详解】x2
7、x0,x(x-1)=0,x=0,或x-1=0,解得x10,x21,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:移项,使方程的右边化为零;将方程的左边分解为两个一次因式的乘积;令每个因式分别为零,得到两个一元一次方程;解这两个一元一次方程,它们的解就都是原方程的解3、B【分析】根据直接开平方法可进行求解一元二次方程【详解】解:,;故选B【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键4、D【分析】根据该药品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解【详解】解:依题意得:128(1-x)2=88故选
8、:D【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键5、B【分析】判别式b24ac,由于ac0,则ac0,而b20,于是可判断0,然后根据判别式的意义判断根的情况【详解】解:关于x的一元二次方程为ax2+bx+c0,b24ac,ac0,ac0,又b20,0,方程有两个不相等的实数根故选B【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于能够熟知一元二次方程根的情况与判别式的关系:(1)0,方程有两个不相等的实数根;(2)=0,方程有两个相等的实数根;(3) 0,方程没有实数根6、A【分析】根据题意,将m代入方程中,得到,再将整理成,利用整
9、体代入法解题即可【详解】解:是方程的根,故选A【点睛】本题考查一元二次方程的解、代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键7、D【分析】根据根的判别式判断一元二次方程根的情况,再根据根与系数的关系求解即可【详解】解:A. ,不符合题意;B. ,该方程无实根,不符合题意;C. ,该方程无实根,不符合题意;D. ,该方程有实根,且,符合题意;故选D【点睛】本题考查了一元二次方程根与系数的关系,掌握根与系数的关系以及使用的前提条件是一元二次方程有实根,掌握一元二次方程根与系数的关系和根的判别式是解题的关键8、B【分析】先利用得到,再利用x的一次式表示出,则进行化简,然后
10、解方程,从而得到的值【详解】解:根据题意,;,解得:,;故选:B【点睛】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解所以解高次方程一般要降次,即把它转化成二次方程或一次方程也有的通过因式分解来解通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键9、A【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可【详解】解:,即,故选A【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键10、C【分析】令
11、,由判别式即可判断;若,则a、c异号,由判别式即可判断;令得,即可判断;取,来进行判断即可【详解】由当,方程此时没有实数根,故错误;若,a、c异号,则,方程一定有两个不相等的实数根,所以正确;令得,则方程一定有一个根为;正确;当,时,有两个不相等的根为,但方程只有一个根为1,故错误故选:C【点睛】本题考查一元二次方程的解以及判别式,掌握用判别式判断根的情况是解题的关键二、填空题1、【分析】设二、三两个月新注册用户每月平均增长率是x,根据该买菜APP今年一月份及三月份新注册用户人数,即可得出关于x的一元二次方程【详解】解:设二、三两个月新注册用户每月平均增长率是x,依题意,得:200(1x)23
12、38,故答案为:【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键2、3【分析】把x2代入方程x2+bx100得关于b的方程,然后解方程即可【详解】解:关于x的一元二次方程x2+bx100的一个根为2,把x2代入方程x2+bx100得4+2b100,解得b3故答案为:3【点睛】本题考查了一元二次方程的解和解一元一次方程。解题的关键在于能够熟知一元二次方程解得定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解3、4000(1+x)2=5500【分析】根据去年及明年的平均房价,列出关于x的一元二次方程即可解题【详解】解:设这两年平均房价年平均增长率为
13、x,根据题意得,4000(1+x)2=5500故答案为:4000(1+x)2=5500【点睛】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题关键4、2019【分析】由韦达定理可列出m,n的代数值,代入计算即可【详解】m,n分别为一元二次方程的两个实数根m+n=-2,则【点睛】本题考查了韦达定理,如果的两个实数根是,那么,推论1:如果方程的两个根是,那么,.推论2:以两个数为根的一元二次方程(二次项系数为1)是5、100(1+x)2=144【分析】设该公司二、三月销量的月平均增长率为x,利用增长率表示三月销量100(1+x)2,列方程即可【详解】解:设该公司二、三
14、月销量的月平均增长率为x,则可列方程为100(1+x)2=100+44,即100(1+x)2=144,故答案为:100(1+x)2=144【点睛】本题考查一元二次方程解增长率问题应用题,掌握一元二次方程解增长率问题应用题方法与步骤,抓住等量关系利用增长率表示三月销售智能音箱100(1+x)2与100+44相等列方程是解题关键三、解答题1、(1)1号线客运量的月平均增长率为20%;(2)预计1号线在2022年1月份的客运量能突破200万人次【分析】(1)设1号线客运量的月平均增长率为x,列出,求解即可;(2)按照客运量这样的月增长率,在2022年1月份的客运量为,计算出结果比较即可【详解】解:(
15、1)设1号线客运量的月平均增长率为x,则解得(舍去)(2)按照客运量这样的月增长率,1号线在2022年1月份的客运量为,(万人次)(万人次)答:(1)1号线客运量的月平均增长率为20%(2)预计1号线在2022年1月份的客运量能突破200万人次【点睛】本题考查了一元二次方程的应用,解题的关键是根据题意列出相应的等式2、(1)2;(2)或.【分析】(1)由题意先利用二次根式的乘除运算法则计算,进而计算算术平方根,最后计算加减法即可;(2)根据题意利用配方法进行计算即可解出方程.【详解】解:(1)原式(2)则或,解得:或.【点睛】本题考查二次根式的乘除运算和解一元二次方程,熟练掌握二次根式的乘除运
16、算法则和利用配方法求解方程是解题的关键.3、(1)(2)是一元二次方程,(3)不是,理由见解析【分析】(1)根据直接代入求值即可;(2)根据新定义,将方程化简,进而解一元二次方程即可;(3)方法同(2)解一元二次方程,进而判断方程的根即可(1)故答案为:(2)是一元二次方程解得:(3)的根不是,则,即【点睛】本题考查了新定义运算,代数式求值,解一元二次方程,一元二次方程的定义,掌握解一元二次方程的方法是解题的关键一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程4、(1)证明见解析;(2)【分析】(1)根据方程的系数结合根的判别式,可得(k4)20,由此可
17、证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x14,x2k,根据方程有一根小于2,即可得出k的取值范围【详解】(1),=,方程总有两个实数根(2),解得:,该方程有一个根小于2,【点睛】本题考查了根的判别式、因式分解法解一元二次方程,利用因式分解法解一元二次方程表示出方程的两个根,熟练掌握当0时,方程有两个实数根是解题关键5、(1),;(2)二;,【详解】解:(1)配方,得,即由此可得解得,(2)第二步在两边同时除以时未考虑的情况,故第二步错误故答案为:二;正确的解答过程如下:原方程可以化简为移项,得因式分解,得由此可得或解得,【点睛】本题考查解一元二次方程,熟练掌握该知识点是解题关键