《2022年人教版九年级数学下册第二十七章-相似同步测试试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年人教版九年级数学下册第二十七章-相似同步测试试题(名师精选).docx(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十七章-相似同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与ABC相似的三角形所在的网格图形是()AB
2、CD2、如图,在边长为2的正方形ABCD中,已知BE1,将ABE沿AE折叠,点G与点B对应,连结BG并延长交CD于点F,则GF的长为()ABCD3、如图,在平面直角坐标系中,ABC的顶点A在第二象限,点B坐标为(2,0),点C坐标为(1,0),以点C为位似中心,在x轴的下方作ABC的位似图形ABC若点A的对应点A的坐标为(2,3),点B的对应点B的坐标为(1,0),则点A坐标为()A(3,2)B(2,)C(,)D(,2)4、如图,在矩形中,连接,以对角线为边,按逆时针方向作矩形的相似矩形,再连接,以对角线为边作矩形的相似矩形,按此规律继续下去,则矩形的周长为( )ABCD5、如图,点P是ABC
3、D边AD上的一点,E,F分别是BP,CP的中点,已知ABCD面积为16,那么PEF的面积为( )A8B6C4D26、如图,在ABC中,点D在边AB上,若ACDB,AD3,BD4,则AC的长为( )A2BC5D27、如图,在平面直角坐标系中,将以原点O为位似中心放大后得到,若,则与的面积的比是( )ABCD8、若,ab+c18,则a的值为()A11B12C13D149、如图,在中,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )AB2C3D410、如图,在RtABC中,A90点D在AB边上,点E在AC边上,满足CDE45,AEDB若DE1,BC7,则( )A2B4C5D6第卷(
4、非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,为坐标原点,在轴正半轴上,四边形为平行四边形,反比例函数的图象经过点与边相交于点,若,则_ 2、如图,双曲线经过Rt斜边上的中点A,与BC交于点D,则_3、在ABC中,AB8,点D、E分别是AC、BC上点,连接DE,将CDE沿DE翻折得FDE,点C的对应点F正好落在AB上,若1290,SADFSCDE,BEF的而积为12,则点D到BC的距离为 _4、已知,则_5、若在比例尺为的地图上,测得两地的距离为1.5厘米,则这两地的实际距离是_千米三、解答题(5小题,每小题10分,共计50分)1、如图,为坐标原点
5、,两点坐标分别为,(1)以为位似中心在轴左侧将放大两倍,并画出图形;(2)分别写出,两点的对应点,的坐标;(3)已知为内部一点,写出的对应点的坐标2、如图,在平行四边形ABCD中,对角线AC与BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,延长EO交AD于点G(1)求证:AOGCOF;(2)若AB3,BC4,CE2,则CF 3、如图,如果直线/,那么的面积和的面积是相等的请你对上述的结论加以证明【方法操究】如图,在中,点D、E分别在边AB、AC上,/,点F在边BC上,连结DF、EF求证:【拓展应用】如图,在中,D、E分别在边AB、AC上,在线段DE上取一点F(点F不与点D、E重
6、合),连结AF并延长交BC于点G点M、N在线段BC上,且,若,则_4、如图,RtABC中,ACB90,AC4cm,BC3cm,以AC为边向右作正方形ACDE,点P从点C出发,沿射线CD以1cm/s的速度向右运动,过点P作直线l与射线BA交于点Q,使得BPQB,设运动时间为t(s),BPQ与正方形ACDE重合部分的面积为S(cm2)(1)当直线l经过点E时,t的值为 (2)求S关于t的函数关系式,并直接写出自变量t的取值范围5、如图所示,在RtABC中,B90,AB6cm,BC8cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动如果点
7、P,Q分别从点A,B同时出发,问:(1)经过几秒后,PBQ的面积等于8cm2?(2)经过几秒后,两个三角形相似-参考答案-一、单选题1、C【解析】【分析】可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题【详解】解:根据勾股定理,AC,BC,所以,夹直角的两边的比为2,观各选项,只有C选项三角形符合,与所给图形的三角形相似故选:C【点睛】此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键2、B【解析】【分析】如图所示:设BF与AE相交于M,先证明EBMBAE,即可利用
8、ASA证明RtABERtBCF得到CFBE1,从而求出,然后证明EBMFBC,得到 ,即 ,求出 ,即可得到BG2BM,即可得到FGBFBG3 【详解】解:如图所示:设BF与AE相交于M,四边形ABCD是正方形,ABBC,ABCBCD90,ABE沿AE折叠得到AGE,AE是线段BG的垂直平分线,EMB90,EBM+BEM90,BAE+BEM90,EBMBAE,在RtABE和RtBCF中,RtABERtBCF(ASA),CFBE1,又EBMFBC,BMEBCF,EBMFBC,即,BG2BM,FGBFBG3,故选B【点睛】本题主要考查了正方形的性质,折叠的性质,全等三角形的性质与判定,相似三角形的
9、性质与判定,勾股定理等等,熟练掌握相似三角形的性质与判定条件是解题的关键3、C【解析】【分析】如图,过点A作AEx轴于E,过点A作AFx轴于F利用相似三角形的性质求出AE,OE,可得结论【详解】解:如图,过点A作AEx轴于E,过点A作AFx轴于FB(-2,0),C(-1,0),B(1,0),A(2,-3)OB=2,OC=OB=1,OF=2,AF=3,BC=1,CB=2,CF=3,ABCABC,ACE=ACF,AEC=AFC=90,AECAFC,故选:C【点睛】本题考查位似变换,坐标与图形性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题4、C【解析】【分
10、析】根据已知和矩形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律即可求得第n个矩形的周长【详解】四边形ABCD是矩形,ADDC,按逆时针方向作矩形ABCD的相似矩形AB1C1C,矩形AB1C1C的边长和矩形ABCD的边长的比为矩形AB1C1C的周长和矩形ABCD的周长的比,矩形ABCD的周长=(2+1)2=6,矩形AB1C1C的周长=,依此类推,矩形AB2C2C1的周长和矩形AB1C1C的周长的比矩形AB2C2C1的周长=矩形AB3C3C2的周长=按此规律矩形的周长为:故选:C【点睛】本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律5
11、、D【解析】【分析】根据平行线间的距离处处相等,得到,根据EF是PBC的中位线,得到PEFPBC,EF=,得到计算即可【详解】点P是ABCD边AD上的一点,且 ABCD面积为16,;E,F分别是BP,CP的中点, EFBC,EF=,PEFPBC,故选D【点睛】本题考查了平行四边形的性质,三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键6、B【解析】【分析】求出AB,通过AA证ACDABC,推出,代入求出即可【详解】解:AD3,BD4,AB7,AA,ACDB,ACDABC,AC2ADAB21,AC,故选:B【点睛】本题考查了相似三角形的性质和判定
12、的应用,关键是推出ACDABC并进一步得出比例式7、D【解析】【分析】根据图形可知位似比为,根据相似比等于位似比,面积比等于相似比的平方,即可求得答案【详解】解:,则与的位似比为,与的相似比为则与的面积比为故选D【点睛】本题考查了位似图形的性质,求得位似比是解题的关键8、B【解析】【分析】设k,则可利用k分别表示a、b、c,再利用ab+c18,所以2k3k+4k18,然后解k的方程,从而得到a的值【详解】解:设k,a2k,b3k,c4k,ab+c18,2k3k+4k18,解得k6,a2612故选:B【点睛】本题考查了比例的性质:熟练掌握比例的基本性质是解决问题的关键9、B【解析】【分析】由折叠
13、的特点可知,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可【详解】解:沿折叠,使点落在点处,又,又为的中点,AE=AE,即,故选:B【点睛】本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键10、A【解析】【分析】根据ADEACB,得到AC=7AD,AB=7AE,过点E作EFDC,垂足为F,由CDE45,DE1,CFECAD,得到EF,DF,FC,DC的长,计算面积即可【详解】如图,过点E作EFDC,垂足为F,AEDB,AA,ADEACB,AD:AC= AE:AB= DE:BC=1:7,AC=7AD,AB=7AE,CDE4
14、5,DE1,EF=DF=,EFCDAC,ECFDCA,CFECAD,EF:DA= CF:CA, EF:CF= DA:CA =1:7, CF=,CD=,=2,故选【点睛】本题考查了三角形的相似与性质,勾股定理,熟练掌握三角形相似的判定是解题的关键二、填空题1、【解析】【分析】如图,过点D作DEx轴于点E,过点B作BFx轴于点F,连接AD,OD由DEBF,推出,设DE2a,则BF3a,则D( ,2a),A( ,3a);用a表示CE,CF,构建方程即可解决问题.【详解】解:如图,过点D作DEx轴于点E,过点B作BFx轴于点F,连接AD,OD, 而CD:BD2:1,设DE2a,则BF3a,则D(,2a
15、),A(,3a),SABC10,CD2BD,SADC,SADCSODC,OCDE,OC,ABOC,B(,3a)CE,CF,解得k24经检验:符合题意,故答案为:24【点睛】本题考查反比例函数的性质,平行四边形的性质,相似三角形的判定与性质,三角形的面积等知识,解题的关键是学会利用参数解决问题2、14【解析】【分析】过A作轴于点E,根据反比例函数的比例系数k的几何意义可得,由,得,相似三角形面积的比等于相似比的平方,据此即可求得,从而求得k的值【详解】如图,作轴,则,轴,点A是OB中点,解得:,反比例函数过第一象限,故答案为:14【点睛】本题考查反比例函数系数k的几何意义、相似三角形的判定与性质
16、,熟知“过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于”是解题的关键3、【解析】【分析】连接CF,交DE于H,作DGAB于G,通过证明AGDFGD,得AD=DF,从而可证D是AC中点,再证明E是BC中点,根据相似三角形的判定与性质,设SCDE=m,根据BEF的而积为12求出m,然后根据三角形的面积公式和勾股定理求解即可【详解】解:连接CF,交DE于H,作DGAB于G,则AGD=DGF=90,1290,1+GDF90,GDF2,GDF3在AGD和FGD中,AGDFGD,DA=DF,A=1由折叠的性质知,AGDFGD,FD=CD,FE=CE,4=5,AD=CDA+1+4+
17、5=180,1+4=90,AFC=90,BFC=90,FE=CE,6=78+6=90,B+7=90,8=B,FE=BE,CE=BE,D、E分别为AC、BC的中点,DE/AB,CDECAB,设SCDE=m,则SACB=4m,SADFSCDE,SADFm,m+m+m+12=4m,m=8,SCDE=8,SACB=32,SBFE=32-8-8-4=12,AB=8,CF=8DE/AB,ABF与BFE等高,AF:BF=SABF:SBFE=4:12=1:3,BF=AB=6BFC=90,BC=10E为BC中点,BE=CE=5设D到BC的距离为h,h=故答案为:【点睛】本题考查了折叠的性质,勾股定理,全等三角形
18、的判定与性质,等腰三角形的判定与性质,以及两平行线间的距离等知识,证明、E分别为AC、BC的中点是解答本题的关键4、【解析】【分析】设,则x、y、z均可用k表示,然后代入所求的代数式中即可求得值【详解】设,则x=2k,y=3k,z=4k故答案为:【点睛】本题考查了比例的基本性质及求代数式的值,在解决三个比的比值相等时,常设其比值为某个数,这样解决问题更简便5、15【解析】【分析】设两地间的实际距离是xcm,由在比例尺为1:1000 000的地图上,量得两地间的距离为1.5厘米,即可得方程 ,解方程即可求得x的值,然后换算单位即可求得答案【详解】解:设两地间的实际距离是xcm,比例尺为1:100
19、0 000,量得两地间的距离为1.5cm,解得:x=1500000,1500000cm=15km,两地间的实际距离是15千米,故答案为:15【点睛】本题考查了比例的性质比例尺的性质,解题的关键是根据题意列方程,要注意统一单位三、解答题1、(1)画图见解析;(2)点的坐标为(-6,2),点的坐标为(-4,-2);(3)点的坐标为(-2x,-2y)【解析】【分析】(1)利用位似变换的性质分别作出B、C的对应点,然后顺次连接O,即可;(2)根据(1)中所作图形即可得到,两点的坐标;(3)根据位似图形上对应点的坐标的横纵坐标对应比相同进行求解即可【详解】解:(1)如图所示,OBC即为所求;(2)如图所
20、示,点的坐标为(-6,2),点的坐标为(-4,-2);(3)OBC是OBC以O为位似中心,位似比为2的对应图形,点M(x,y)为OBC内部一点,点M的对应点的坐标为(-2x,-2y)【点睛】本题主要考查了画位似图形和求位似图形上的对应点的坐标,解题的关键在于能够熟练掌握位似图形的相关知识2、(1)见解析;(2)87【解析】【分析】(1)由“ASA”可证AOGCOF;(2)通过证明CFEDGE,可得CFGD=CEDE,即可求解【详解】(1)证明:四边形ABCD是平行四边形,AOCO,ADBC,CADACB,在AOG和COF中,DAC=ACBAO=COAOG=COF,AOGCOF(ASA);(2)
21、解:ADBC,CFEDGE,CFGD=CEDE,CFAD-CF=CECD+CE,CF4-CF=23+2,CF87【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握图形的性质是解答本题的关键3、【教材呈现】见解析;【方法探究】见解析;【拓展应用】24【解析】【分析】【教材呈现】过点A作AEl2于点E,过点D作DFl2于点F,利用平行线间的距离相等证明即可;【方法探究】连结BE,过点E作EHAB于点H,证ADEABC,利用相似三角形的性质和(1)的结论推理即可;【拓展应用】如图中,利用相似三角形的性质求出ADE的面积,再根据SBFM+ENC83SBDE
22、计算即可【详解】解:【教材呈现】如图,过点A作AEl2于点E,过点D作DFl2于点F,l1/l2,AE=DFSABC=12BCAE,SDBC=12BCDF,SABC=SDBC【方法探究】如图,连结BE,过点E作EHAB于点H,ADBD=12SADE=12ADEH,SBDE=12BDEH,SBDE=2SADEDE/BC,SBDE=SFDE,ADE=ABCSFDE=2SADE,ADEABC,SABC=9SADE【拓展应用】如图中,ADAB=AEAC=37,DAE =BACADEABC,SADESABC(ADAB)2949,SABC49,SBDE9,SAFM432SAEF83SAEF,SENC432
23、 SADF=83SADF,SBFM+SCEN=83SADE=839=24,故答案为24【点睛】本题属于相似三角形综合题,考查了三角形中位线定理,平行四边形的判定和性质,三角形的面积,四边形的面积等知识,解题的关键是理解题意,学会利用模型解决问题,属于中考压轴题4、(1)7;(2)S=23t2(0t3)4t-6(3t4)-23t2+283t-503(47)【解析】【分析】(1)根据正方形的性质可证得EPDABC(AAS),即可求得答案;(2)分三种情况:当0t3时,如图2,设PQ与AC交于点F,由FPCABC,可求得FC=43t,再运用三角形面积公式即可;当3t4时,如图3,设PQ与AE交于点G
24、,过点A作AFPQ交CD于点F,先证明四边形AFPG是平行四边形,再证明AFCABC(AAS),即可求得答案;当4t7时,如图4,PQ交AE于G,交DE于H,由PHDGHE,ABCHPD,SS正方形ACDESEGH,即可求得答案;当t7时,S16【详解】(1)四边形ACDE是正方形,CPtcm,ACDCDE90,ACCDDE4cm,直线l经过点E,BPQB,EPDABC(AAS),PDBC3cm,CPCD+PD4+37(cm),t7,故答案为:7;(2)当0t3时,如图2,设PQ与AC交于点F,FCPACB90,FPCABC,FPCABC,FCCP=ACBC,即FCt=43,FC=43t,S=
25、12CPFC=12t43t=23t2;当3t4时,如图3,设PQ与AE交于点G,过点A作AFPQ交CD于点F,四边形ACDE是正方形,AECD,四边形AFPG是平行四边形,AFPQ,AFCBPQ,BPQABC,ACFACB90,ACAC,AFCABC(AAS),CFCB3cm,FPCPCF(t3)cm,S=SAFC+SAFPG=12CFAC+FPAC=1234+4(t-3)=4t-6;当4t7时,如图4,PQ交AE于G,交DE于H,四边形ACDE是正方形,PDHE90,PHDGHE,PHDGHE,DPGE=DHEH,即t-4GE=DHEH,ACBHDP90,ABCHPD,ABCHPD,DHDP
26、=ACBC,即DHt-4=43,DH=43(t-4),EH=DE-DH=4-43(t-4)=-43t+283,GEEH=DPDH=34,GE=34(-43t+283)=-t+7,S=S正方形ACDE-SEGH=16-12(-t+7)(-43t+283)=-23t2+283t-503;当t7时,S16;综上所述,S=23t2(0t3)4t-6(3t4)-23t2+283t-503(47)【点睛】本题考查正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质,掌握相关知识点是解决问题的关键5、(1)2秒或4秒;(2)或1811秒【解析】【分析】(1)设经过x秒后,PBQ的面积等于8cm2,根
27、据三角形面积公式列一元二次方程,解方程,问题得解;(2)设经过y秒后,BPQ与BAC相似,根据B=B,分BPQBAC和BPQBCA两种情况讨论,根据比例式列出方程,解方程,问题得解【详解】解:(1)设经过x秒后,PBQ的面积等于8cm2,由题意得122x6-x=8,解得x1=2,x2=4,答:经过2秒或4秒后,PBQ的面积等于8cm2(2)设经过y秒后,BPQ与BAC相似,B=B,当BPBA=BQBC时,BPQBAC,即6-y6=2y8,解得y= ;当BPBC=BQBA时,BPQBCA,即6-y8=2y6,解得y= 1811;答:进过或1811秒后,两个三角形相似【点睛】本题考查了一元二次方程的应用,相似三角形形的判定,根据题意列出方程是解题关键,注意两个三角形相似没有指明对应边,故要分类讨论