《2022年北师大版九年级数学下册第二章二次函数专题练习练习题(精选).docx》由会员分享,可在线阅读,更多相关《2022年北师大版九年级数学下册第二章二次函数专题练习练习题(精选).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第二章二次函数专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、抛物线y2(x1)22图象与y轴交点的坐标是()A(0,2)B(0,2)C(0,0)D(2,0)2、关于二次函数
2、y=-(x -2)23,以下说法正确的是( )A当x-2时,y随x增大而减小B当x-2时,y随x增大而增大C当x2时,y随x增大而减小D当x2时,y随x增大而增大3、已知抛物线的解析式为,则这条抛物线的顶点坐标是( )ABCD4、若抛物线平移得到,则必须( )A先向左平移4个单位,再向下平移1个单位B先向右平移4个单位,再向上平移1个单位C先向左平移1个单位,再向下平移4个单位D先向右平移1个单位,再向下平移4个单位5、某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,
3、则每件的定价为( )A21元B22元C23元D24元6、把函数的图象向右平移2个单位,再向下平移1个单位,得到的图象解析式为( )ABCD7、将抛物线向右平移2个单位,再向上平移3个单位得到的抛物线是( )ABCD8、如图,抛物线yax2+bx+c交x轴分别于点A(3,0),B(1,0),交y轴正半轴于点D,抛物线顶点为C下列结论:2ab0;a+b+c0;当m1时,abam2+bm;当ABC是等腰直角三角形时,a;若D(0,3),则抛物线的对称轴直线x1上的动点P与B、D两点围成的PBD周长最小值为3+10其中,正确的个数为()A2个B3个C4个D5个9、已知点P1(x1,y1),P2(x2,
4、y2)为抛物线yax2+4ax+c(a0)上两点,且x1x2,则下列说法正确的是()A若x1+x24,则y1y2B若x1+x24,则y1y2C若a(x1+x24)0,则y1y2D若a(x1+x24)0,则y1y210、如果将抛物线yx2+2先向左平移1个单位,再向下平移1个单位,那么所得新抛物线的表达式是()Ay(x1)2+2By(x+1)2+1Cyx2+1Dy(x+1)21第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将抛物线y3x2+1向左平移2个单位长度,再向下平移4个单位长度,所得抛物线的解析式是_2、若二次函数在时的最小值为6,那么m的值是_3、如图,一次函
5、数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函数关联的二次函数如果一次函数的关联二次函数是(),那么这个一次函数的解析式为_4、二次函数的图象与x轴有两个交点,则k的取值范围是_5、将抛物线y(x+1)23向右平移1个单位,再向上平移2个单位长度,得到的抛物线解析式为_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,点(1,m)和点(3,n)在二次函数yx2bx的图象上(1)当m-3时求这个二次函数的顶点坐标; 若点(-1,y1),(a,y2)在二次函数的图象上,且y2y1,
6、则a的取值范围是_;(2)当mn0时,求b的取值范围2、一大型商场经营某种品牌商品,该商品的进价为每件30元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:x(元/件)405060y(件)1000095009000(1)求y与x的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于150元/件若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于150元/件时,每销售一件商品便向某慈善机构捐赠m
7、元,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大请求出m的取值范围3、如图,的顶点坐标分别为,动点P、Q同时从点O出发,分别沿x轴正方向和y轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P到达点B时点P、Q同时停止运动过点Q作分别交AO、AB于点M、N,连接PM、PN设运动时间为t(秒)(1)求点M的坐标(用含t的式子表示);(2)当t为何值时,四边形MNBP的面积最大:(3)连接AP,是否存在点P使,若存在,求出此时t的值,若不存在,请说明理由 4、某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入,
8、试销的30天中,该村第一天卖出土特产42千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出6千克,第x天的售价为y元/千克,y关于x的函数解析式为y,x为正整数,且第14天的售价为34元/千克,第27天的售价为27元/千克已知土特产的成本是21元/千克,每天的利润是W元(利润销售收入成本)(1)m ,n ;(2)求每天的利润W元与销售的天数x(天)之间的函数关系式;(3)在销售土特产的30天中,当天利润不低于1224元的共有多少天?5、某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年
9、最大产销量(件)甲8a20200乙2010 90其中a为常数,且5a7(1)若产销甲、乙两种产品的年利润分别为万元、万元,直接写出、与x的函数关系式;(注:年利润=总售价总成本每年其他费用)(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由-参考答案-一、单选题1、C【分析】结合题意,根据二次函数图像的性质,当时,计算y的值,即可得到答案【详解】当时, 抛物线y2(x1)22图象与y轴交点的坐标是:(0,0)故选:C【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数图像的性质,从而完成求解2、C【分析】由抛物线解析式可求得开口方向
10、、对称轴、顶点坐标,可求得答案【详解】解:,抛物线开口向下,对称轴为x=2,顶点坐标为(2,3),二次函数的图象为一条抛物线,当x2时,y随x的增大而减小,x2时,y随x增大而增大C正确,故选:C【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)3、B【分析】利用抛物线解析式即可求得答案【详解】解:,抛物线顶点坐标为,故选:B【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2k中,顶点坐标为(h,k),对称轴为xh4、B【分析】根据两抛物线的顶点坐标即可确定平移的方向与距
11、离,从而完成解答【详解】抛物线的顶点为(4,1),而抛物线的顶点为原点由题意,把抛物线的顶点先向右平移4个单位,再向上平移1个单位,即可得到抛物线的顶点,从而抛物线先向右平移4个单位,再向上平移1个单位即可得到故选:B【点睛】本题考查了二次函数图象的平移,关键是抓住抛物线顶点的平移5、B【分析】设每天的销售利润为 元,每件的定价为 元,则每件的利润为元,平均每天售出件, 根据每天的销售利润等于每件的利润乘以销售量,列出函数关系式,即可求解【详解】解:设每天的销售利润为 元,每件的定价为 元,则每件的利润为元,平均每天售出件, 根据题意得: , 当 时, 最大,即每件的定价为22元时,每天的销售
12、利润最大故选:B【点睛】本题主要考查了二次函数的应用,明确题意,准确列出函数关系式是解题的关键6、A【分析】根据函数图象平移变换关系进行求解即可【详解】把函数的图象向右平移2个单位、再向下平移1个单位后的解析式为故选:A【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减并用规律求函数解析式7、A【分析】抛物线的移动主要看顶点的移动,的顶点是, 的顶点是,的顶点是 ,的顶点是 先确定抛物线顶点坐标是原点,然后根据向右平移,横坐标加,向上平移纵坐标加,求出平移后的抛物线的顶点坐标,再根据平移变换不改变图形的形状,利用顶点式写出即可抛物线的平移口诀:自变量加减:左加
13、右减,函数值加减:上加下减【详解】解:抛物线的顶点坐标为(0,0),向右平移2个单位,再向上平移3个单位,平移后的顶点坐标为(2,3),平移后的抛物线解析式为故选:A【点睛】本题考查了二次函数图象的平移,根据顶点的变化确定函数的变化,要熟记平移规律“左加右减,上加下减”8、C【分析】根据二次函数的性质,等腰直角三角形的性质,两点之间线段最短一一判断即可【详解】解:抛物线yax2+bx+c交x轴分别于点A(3,0),B(1,0),a+b+c0,故正确;对称轴为直线x1,1,2ab0,故正确;由图象可知,当x1时,y有最大值,最大值ab+c,m1,ab+cam2+bm+c,abam2+bm,故正确
14、,A(3,0),B(1,0),AB4,ABC是等腰直角三角形时,C(1,2),可设抛物线的解析式为ya(x+1)2+2,把(1,0)代入得到a,故正确,如图,连接AD交抛物线的对称轴于P,连接PB,此时BDP的周长最小,最小值PD+PB+BDPD+PA+BDAD+BD,AD3,BD,PBD周长最小值为3,故错误故选:C【点睛】本题考查二次函数的性质,等腰直角三角形的性质,解题的关键是熟练掌握二次函数的性质、灵活运用数形结合思想,属于中考常考题型9、C【分析】先求出抛物线的对称轴为,然后结合二次函数的开口方向,判断二次函数的增减性,即可得到答案【详解】解:抛物线yax2+4ax+c,抛物线的对称
15、轴为:,当点P1(x1,y1),P2(x2,y2)恰好关于对称时,有,即,x1x2,;抛物线的开口方向没有确定,则需要对a进行讨论,故排除A、B;当时,抛物线yax2+4ax+c的开口向下,此时距离越远,y值越小;a(x1+x24)0,点P2(x2,y2)距离直线较远,;当时,抛物线yax2+4ax+c的开口向上,此时距离越远,y值越大;a(x1+x24)0,点P1(x1,y1)距离直线较远,;故C符合题意;D不符合题意;故选:C【点睛】本题考查了二次函数的性质,二次函数的对称性,解题的关键是熟练掌握二次函数的性质进行分析10、B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式
16、写出即可【详解】抛物线的顶点坐标为,向左平移1个单位,向下平移1个单位后的抛物线的顶点坐标为,平移后的抛物线的解析式为故选:B【点睛】本题考查了二次函数图象与几何变换,根据规律利用点的变化确定函数解析式是解题的关键二、填空题1、【分析】根据“上加下减,左加右减”的原则即可求出平移后的二次函数的解析式【详解】解:抛物线向左平移2个单位长度,再向下平移4个单位长度,所得抛物线的解析式是,故答案为:【点睛】本题主要考查了二次函数图形的平移,解题的关键在于能够熟练掌握二次函数图形平移的规律2、或【分析】由题意易得二次函数的对称轴为直线,则有该二次函数的最小值为4,然后由题意可分当m0时,则有y随x的增
17、大而减小,当m1时,则y随x的增大而增大,进而根据函数的性质可进行求解【详解】解:由二次函数可知对称轴为直线,当x=1时,二次函数有最小值,最小值为,二次函数在时的最小值为6,然后可分当m+11时,即m0,则有y随x的增大而减小,当x=m+1时,函数有最小值,即为,解得:(正根舍去),当m1时,则y随x的增大而增大,当x=m时,函数有最小值,即为,解得:(负根舍去),综上所示:m的值是或;故答案为或【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键3、【分析】由题意可知二次函数与坐标轴的三个交点坐标为(0,k),(1,0),(-k,0),将其代入抛物线()即可得
18、m、k的二元一次方程组,即可解出,故这个一次函数的解析式为【详解】一次函数与y轴的交点为(0,k),与x轴的交点为(1,0)绕O点逆时针旋转90后,与x轴的交点为(-k,0)即(0,k),(1,0),(-k,0)过抛物线()即得将代入有整理得解得k=3或k=-1(舍)将k=3代入得故方程组的解为则一次函数的解析式为故答案为:【点睛】本题考查了一次函数和二次函数的图象及其性质,解二元一次方程组,结合旋转的性质以及图象得出抛物线与坐标轴的三个交点坐标是解题的关键4、【分析】根据抛物线与x轴有两个交点,可得,列出不等式求解即可【详解】解:二次函数的图象与x轴有两个交点,所以,解得,故答案为:【点睛】
19、本题考查了二次函数与一元二次方程的关系,解题关键是明确抛物线与x轴有两个交点,可得5、【分析】根据题意直接利用二次函数平移规律即“上加下减,左加右减”的原则进行分析即可得出平移后解析式【详解】解:将抛物线y(x+1)23向右平移1个单位,再向上平移2个单位长度,得到的抛物线解析式为,化简得:.故答案为:.【点睛】本题考查二次函数图象的平移与几何变换,熟练掌握并利用抛物线解析式的变化规律:左加右减,上加下减进行分析是解题的关键三、解答题1、(1);或;(2)【分析】(1)将点(1,-3)代入yx2bx求出b的值,得出函数关系式,再进行配方即可得到抛物线的顶点坐标;根据函数的图象,结合函数性质可得
20、出a的取值;(2)用含有b的代数式分别表示出m,n,根据mn0分类讨论即可【详解】解:(1)当m-3时把点(1,-3)代入yx2bx,得b-4,二次函数表达式为yx2 -4x(x-2)2 -4所以顶点坐标为(2,-4)根据题意得抛物线yx2 -4x开口向上,对称轴为直线x=2,y2y1,i)当点(-1,y1),(a,y2)在抛物线对称轴左侧时,有;ii)当点(-1,y1),(a,y2)在抛物线对称轴两侧时,根据对称性可知;所以a的取值范围是:a-1或a5故答案为:a-1或a5(2)将点(1,m),(3,n)代入yx2bx,可得m1b ,n93b当mn0时,有两种情况:若 把m1b ,n93b代
21、入可得 此时不等式组无解若 把m1b ,n93b代入可得解得-3b-1 所以-3b-1【点睛】本题考查了运用待定系数法求二次函数解析式以及二次函数图象上点的特点,能结合题意确定b的取值范围是解题的关键2、(1);(2)这一周该商场的最大利润为540000元,售价为120元;(3)【分析】(1)用待定系数法求出一次函数的解析式便可;(2)根据“在销售过程中要求销售单价不低于成本价,且不高于150元/件若某一周该商品的销售量不少于6000件,”列出x的不等式组,求得x的取值范围,再设利润为w元,由w=(x-30)y,列出w关于x的二次函数,再根据二次函数的性质求出利润的最大值和售价;(3)根据题意
22、列出利润w关于售价x的函数解析式,再根据函数的性质,列出m的不等式进行解答便可【详解】解:(1)设y与x的函数关系式为:y=kx+b(k0),把x=40,y=10000和x=50,y=9500代入得,解得,y=-50x+12000;(2)根据“在销售过程中要求销售单价不低于成本价,且不高于150元/件若某一周该商品的销售量不少于6000件,”得,解得,30x120,设利润为w元,根据题意得,w=(x-30)y=(x-30)(-50x+12000)=-50x2+13500x-360000=-50(x-135)2+551250,对称轴为直线x=135,-500,当x135时,w随x的增大而增大,3
23、0x120,且x为正整数当x=120时,w取最大值为:-50(120-135)2+551250=540000,答:这一周该商场销售这种商品获得的最大利润为540000元,售价为120元;(3)根据题意得,w=(x-30-m)(-50x+12000)=-50x2+(13500+50m)x-360000-12000m,对称轴为x=-=135+0.5m,-500,当x135+0.5m时,w随x的增大而增大,该商场这种商品售价不大于150元/件时,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大对称轴x=135+0.5m,m大于等于10,则对称轴大于等于140,由于x取整数,实际上x是二次
24、函数的离散整数点, 只需保证x=150时利润大于x=149时即可满足要求,所以对称轴要大于149.5就可以了,故135+0.5m149.5,解得m29,10m60,29m60【点睛】本题考查了一次函数的实际应用,二次函数的实际应用,一元一次不等式组的实际应用,二次函数的性质,待定系数法,关键是读懂题意,正确列出函数解析式和不等式组3、(1);(2)1;(3)0或【分析】(1)先根据点的坐标,求得直线的解析式,再根据题意求得,进而可得的纵坐标,代入到直线解析式即可求得纵坐标;(2)先求得,MN的长,进而用含的代数式求得四边形MNBP的面积,根据二次函数的性质求最值以及的值(3)分三种情况讨论,当
25、根据相似三角形的性质与判定,列出方程进而求得的值【详解】解:(1)设的直线解析式为,将点的坐标代入,得解得的直线解析式为,的纵坐标为将代入解得的横坐标为(2)如图,过点作,分别交于点,点P的速度为四边形是平行四边形点P到达点B时点P、Q同时停止运动,即时,四边形的面积最大,最大值为6(3)如图,连接AP,由(2)可知当时,点都在原点,此时点与点B重合此时当时,又即解得(舍)当时,不合题意,舍去综上所述或【点睛】本题考查了二次函数求最值问题,相似三角形的性质与判定,求一次函数解析式, 平行四边形的性质与判定,坐标与图形,等腰三角形的性质与判定,勾股定理,掌握以上知识并熟练运用是解题的关键4、(1
26、),27;(2)W,且x为正整数;(3)17天【分析】(1)根据“第14天的售价为34元/千克,第27天的售价为27元/千克”将x和y的值代入相应的函数解析式求解;(2)先求得第x天的销售量,然后根据利润(售价成本价)销售量分段列出函数解析式;(3)结合一次函数和二次函数的性质及利润不低于1224元的条件分析求解【详解】解:(1)第14天的售价为34元/千克,当x14时,y34,11420,把x14,y34代入ymx82m中,14m82m34,解得:m,第27天的售价为27元/千克,当x27时,y27,2720,把y27代入yn中,得:n27,故答案为:,27;(2)由题意,第x天的销售量为4
27、2+6(x1)6x+36,第x天的售价为y,当1x20时,W(x+4121)(6x+36)3x2+102x+720,当20x30时,W(2721)(6x+36)36x+216,综上,W,且x为正整数,(3)当1x20,W1224时,3x2+102x+7201224,解得:x16,x228,30,当W1224时,6x20,且x为正整数,x可取6,7,8,9,10,11,12,13,14,15,16,17,18,19共14天,当20x30,W1224时,36x+2161224,解得:x28,360,当W1224时,28x30,且x为正整数,x可取28,29,30共3天,14+317(天),综上,当
28、天利润不低于1224元的共有17天【点睛】本题考查一次函数的应用,二次函数的应用,理解题意,分段分析函数解析式,掌握一次函数和二次函数的性质是解题关键5、(1)y1=(8-a)x-20(0x200)(0x90);(2)x=200时,y1的值最大=(1580-200a)万元;x=90时,最大值=465万元;(3)当a=5.575时,生产甲乙两种产品的利润相同;当5a5.575时,生产甲产品利润比较高;当5.575a7时,生产乙产品利润比较高【分析】(1)根据年利润=总售价总成本每年其他费用进行求解即可;(2)根据(1)所求,利用一次函数与二次函数的性质求解即可;(3)根据(2)中所求,分当(15
29、80-200a)=465时,当1580-200a)465时,当(1580-200a)465进行求解即可【详解】解:(1)由题意得:y1=(8-a)x-20(0x200),(0x90)(2)对于y1=(8-a)x-208-a0,x=200时,y1的值最大=(1580-200a)万元对于0x90,x=90时,的最大值=465万元(3)当(1580-200a)=465,解得a=5.575,当(1580-200a)465,解得a5.575,当(1580-200a)465,解得a5.5755a7,当a=5.575时,生产甲乙两种产品的利润相同当5a5.575时,生产甲产品利润比较高当5.575a7时,生产乙产品利润比较高【点睛】本题主要考查了一次函数的应用,二次函数的应用,一元一次不等式的应用,解题的关键在于能够正确理解题意,列出相应的关系式