《2021-2022学年基础强化沪科版九年级数学下册第24章圆章节测试试题(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化沪科版九年级数学下册第24章圆章节测试试题(精选).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第24章圆章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形也是轴对称图形的是()ABCD2、如图,在RtABC中,ACB90,A30,BC2将ABC绕
2、点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A3B1CD3、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70,则P的度数为( ) A70B50C20D404、如图,为的直径,为外一点,过作的切线,切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19B38C52D765、已知O的半径为4,点P 在O外部,则OP需要满足的条件是( )AOP4B0OP2D0OP4,故选:A【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键6、D【分析】首先运用勾股定理求出A
3、C的长度,然后结合旋转的性质得到AB= AB,BC= BC,从而求出BC,即可在RtBCC中利用勾股定理求解【详解】解:在RtABC中,AB6,BC8,由旋转性质可知,AB= AB=6,BC= BC=8,BC=10-6=4,在RtBCC中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键7、A【分析】中心对称图形是指绕一点旋转180后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键8、C【分
4、析】根据O的半径r=4,且点A到圆心O的距离d=5知dr,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr9、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键10、D【分析】根据轴对称图形和中心对称图形的概念,对各选项
5、分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空
6、题1、【分析】过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径【详解】如图所示,是正三角形,故O是的中心,正三角形的边长为2,OEAB,由勾股定理得:,(负值舍去)故答案为:【点睛】本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解2、60【分析】正六边形连接各个顶点和中心,这些连线会将360分成6分,每份60因此至少旋转60,正六边形就能与自身重合【详解】3606=60故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键3、【分析】当在点的右边时,得出即可判断;证明出即可判断;根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判
7、断;当时,有最小值,计算即可【详解】解:,为等腰直角三角形,当在点的左边时,当在点的右边时,故错误;过点作,在和中,根据旋转的性质得:,故正确;由中得知为等腰直角三角形,也是等腰直角三角形,过点,不管P在上怎么运动,得到都是等腰直角三角形,即直线一定经过点,故正确;是等腰直角三角形,当时,有最小值,为等腰直角三角形,由勾股定理:,故正确;故答案是:【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理4、60【分析】在RtBOE中,利用勾股定理求得OE=1,知OB=2OE,得到BOE=60,BOC=120
8、,再利用圆周角定理即可解决问题【详解】解:如图作OEBC于EOEBC,BE=EC=,BOE=COE,OE=1,OB=2OE,OBE=30,BOE=COE=60,BOC=120,BAC=60,故答案为:60【点睛】本题考查三角形的外心与外接圆、圆周角定理垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题5、1+【分析】过点C作CDx轴于D,过B作BEx轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,BAC=90,再证BAEACD(AAS),得出BE=AD=x-3,EA
9、=DC,在RtEBO中,根据勾股定理,得出CD=AE=,根据勾股定理CO=,当OD=CD时OC最大,OC=此时解方程即可【详解】解:过点C作CDx轴于D,过B作BEx轴于E,连结OB,设OD=x,点A(3,0)AD=x-3,为等腰直角三角形,AB=AC,BAC=90,BAE+CAD=180-BAC=180-90=90,CDx轴, BEx轴,BEA=ADC=90,ACD+CAD=90,ACD=BAE,在BAE和ACD中,BAEACD(AAS),BE=AD=x-3,EA=DC,在RtEBO中,OB=1,BE= x-3,根据勾股定理,EA=OE+OA=,CD=AE=,CO=,当OD=CD时OC最大,
10、OC=,此时,(舍去),线段OC长度的最大值为故答案为:1+【点睛】本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键三、解答题1、(1)见解析;(2)3【分析】(1)由题意连接OC,OB,由等边三角形的性质可得ABC=BCE=60,求出OCB=30,则OCE=90,结论得证;(2)根据题意由条件可得DBC=30,BEC=90,进而即可求出CE=BC3【详解】解:(1)证明:如图连接OC、OB是等边三角形 又 与O相切; (2)四边形ABCD是O的内接四边形,D为的中点, 【点睛】本题主要考查等边三角形的性质、圆周角定理
11、、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识解题的关键是正确作出辅助线,利用圆的性质进行求解2、(1)相切,见解析(2)【分析】(1)连接OC、OD、AC,OC交AF于点M,根据AGCG,CDAB,可得,从而OCAF,再由AFB90,可得CHAF,即可求证;(2)先证明四边形CMFH为矩形,可得OCAF,CMHF2,从而得到AMFM,进而得到OMBF2,可得到CMOM,进而得到 OC=4,AM垂直平分OC,可证得AOC为等边三角形,即可求解(1)解: CH与O相切理由如下:如图,连接OC、OD、AC,OC交AF于点M, AGCG,ACGCAG,CDAB,OCAF,AB为直径,AF
12、B90,BHCH,CHAF,OCCH,OC为半径,CH为O的切线;(2)解:由(1)得:BHCH,OCCH,OCBH,CHAF,四边形CMFH为平行四边形,OCCH,OCH=90,四边形CMFH为矩形,OCAF,CMHF2,AMFM,点O为AB的中点,OMBF2,CM=OM,OC=4,AM垂直平分OC,ACAO,而AOOC,ACOCOA,,AOC为等边三角形,AOC60,AODAOC60,COD120,弧CD的长度为【点睛】本题主要考查了圆的基本性质,垂径定理,切线的判定,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键3、(1)见解析;(2)90;(3)见解析【分析】(1)由旋转的性质
13、可得对应边相等对应角相等,由相似三角形的判定得出ABDACE,由相似三角形的性质即可得出结论 ;(2)由(1)证得ABDACE,和等腰三角形的性质得出,进而推出,由四边形的内角和定理得出结论;(3)连接CD,由旋转的性质和等腰三角形的性质得出,CGDG,FCFD,由垂直平分线的判断得出A,F,G都在CD的垂直平分线上,进而得出结论【详解】证明:(1)ADE是由ABC绕点A逆时针旋转某个角度得到的,ABAD,ACAE,BADCAE,ABDACE,AB = kAC,BD = kEC;(2)由(1)证得ABDACE,ABAD,ACAE,BAC = 90,在四边形ADGE中,BAC = 90,CGD3
14、601809090;(3)连接CD,如图:ADE是由ABC绕点A逆时针旋转某个角度得到的,BAC = 90,AB = kAC,当k = 1时,ABC和ADE为等腰直角三角形,CGDG,FCFD,点A、点G和点F在CD的垂直平分线上, A,F,G三点在同一直线上【点睛】本题考查了相似三角形的性质和判定,旋转的性质,等腰直角三角形的性质和判定,垂直平分线的判定等知识点,熟练掌握相似三角形的判定和垂直平分线的判定是解题的关键4、(1);(2),0x1;(3)AE的值为或【分析】(1)过点E作EHBD与H,根据正方形的边长为1,求出EB=1-,根据正方形性质可求ABD=45,根据EHBD,得出BEH=
15、180-EBH-EHB=180-45-90=45,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;(2)解:根据AE=x,求出BE=1-x,根据旋转将ADE绕点D针旋转90,得到DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证DEF为等腰直角三角形,先证BEMFDM,得出,再证EMDBMF,得出,两式相乘得出,整理即可;(3)当点G在BC上,先证BGMDAM,得出,由(2)知BEMFDM,得出,得出,结合,消去y, 当点G在CB延长线上,过M作MLBC,交直线BC于L,证明BGMDAM,得出,根据LBM=CBD=45,MLBC,证出MLB为等
16、腰直角三角形,再证MLBDCB,CD=1,ML=,MLBE,结合LMFBEF,得出即解方程即可(1)解:过点E作EHBD与H,正方形的边长为1,EB=1-,BD为正方形对角线,BD平分ABC,ABD=45,EHBD,BEH=180-EBH-EHB=180-45-90=45,EH=BH,EH=BH=BEsin45=,AB=BDcos45,DH=DB-BH=,;(2)解:如上图,AE=x,BE=1-x,将ADE绕点D针旋转90,得到DCF,CF=AE=x,ED=FD=,BF=BC+CF=1+x,在RtEBF中EF=,EDF=90,ED=FD,DEF为等腰直角三角形,DFE=DEF=45,EBM=M
17、FD=45,EMB=DMF,BEMFDM,即,DEM=FBM=45,EMD=BMF,EMDBMF,即,即,0x1;(3)解:当点G在BC上,四边形ABCD为正方形,ADBG,DAM=BGM,ADM=GBM,BGMDAM,由(2)知BEMFDM,DB=,即,解,舍去;当点G在CB延长线上,过M作MLBC,交直线BC于L,GBAD,DAM=BGM,ADM=GBM,BGMDAM,LBM=CBD=45,MLBC,MLB为等腰直角三角形,MLCD,LMB=CDB,L=DCB,MLBDCB,CD=1,ML=MLBE,L=FBE,LMF=BEF,LMFBEF,BE=AE-AB=x-1,LF=LB+BC+CF
18、=,BF=BC+CF=1+x,整理得:,解得,舍去,AE的值为或【点睛】本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键5、AM=EN,理由见解析【分析】根据旋转性质和等边三角形的性质可证得ABM=EBN,BM=BN,AB=BE,根据全等三角形的判定证明ABMEBN即可得出结论【详解】解:AM=EN,理由为:ABE是等边三角形,AB=BE,ABE=60,即EBN=ABN=60,线段BM绕点B逆时针旋转60得到BN,BM=BN,MBN=60,即ABM+ABN=60,ABM=EBN,在ABM和EBN中,ABMEBN(SAS),AM=EN【点睛】本题考查等边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键