《2021-2022学年基础强化沪科版九年级数学下册第24章圆章节测试试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化沪科版九年级数学下册第24章圆章节测试试题(含解析).docx(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第24章圆章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一把直尺、一个含60角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于
2、点B,与直角三角板相切于点C,且,则光盘的直径是( )A6BC3D2、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )A它们的开口方向相同B它们的对称轴相同C它们的变化情況相同D它们的顶点坐标相同3、点P(3,2)关于原点O的对称点的坐标是()A(3,2)B(3,2)C(3,2)D(2,3)4、如图,都是上的点,垂足为,若,则的度数为( )ABCD5、在圆内接四边形ABCD中,A、B、C的度数之比为2:4:7,则B的度数为( )A140B100C80D406、某村东西向的废弃小路
3、/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P A,P分别位于B的西北方向和东北方向,如图所示该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小人工湖建成后,亭子P到湖岸的最短距离是( )A20 mB20mC(20 - 20)mD(40 - 20)m7、如图,AB,CD是O的弦,且,若,则的度数为( )A30B40C45D608、如图,在RtABC中,点D、E分别是AB、AC的中点将ADE绕点A顺时针旋转60,射线BD与射线CE交于点P,
4、在这个旋转过程中有下列结论:AECADB;CP存在最大值为;BP存在最小值为;点P运动的路径长为其中,正确的( )ABCD9、如图,PA,PB是O的切线,A,B为切点,PA4,则PB的长度为( )A3B4C5D610、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则BDC的度数为_2、如图,PM,PN分别与O相切于A,B两点,C为O上异于A,B的一点,连接AC,BC若P5
5、8,则ACB的大小是_3、九章算术是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是_步4、一块直角三角板的30角的顶点A落在上,两边分别交于B、C两点,若弦BC长为4,则的半径为_5、在平面直角坐标系中,已知点与点关于原点对称,则_,_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过A,B,C三点的抛物线
6、上(1)求抛物线的解析式;(2)求过A,B,C三点的圆的半径;(3)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;2、如图,抛物线yx2与x轴负半轴交于点A,与y轴交于点B(1)求A,B两点的坐标;(2)如图1,点C在y轴右侧的抛物线上,且ACBC,求点C的坐标;(3)如图2,将ABO绕平面内点P顺时针旋转90后,得到DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上 求点F的坐标;直接写出点P的坐标 3、在平面直角坐标系xOy中,旋转角满足,对图形M与图形N给出如下定义:将图形M绕原点逆时针旋转得到图形
7、P为图形上任意一点,Q为图形N上的任意一点,称PQ长度的最小值为图形M与图形N的“转后距”已知点,点,点(1)当时,记线段OA为图形M画出图形;若点C为图形N,则“转后距”为_;若线段AC为图形N,求“转后距”;(2)已知点,点,记线段AB为图形M,线段PQ为图形N,对任意旋转角,“转后距”大于1,直接写出t的取值范围4、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明5、在等边中,将线段AB绕点A顺时针旋转得到线段AD(1)若线段DA的延长线与线段
8、BC相交于点E(不与点B,C重合),写出满足条件的的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F依题意补全图形;用等式表示线段AE,AF,CE之间的数量关系,并证明-参考答案-一、单选题1、D【分析】如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知OCA=OBA=90,OC=OB,即可证明RtOCARtOBA得到OAC=OAB,则,AOB=30,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为【详解】解:如图所示,设圆的圆心为O,连接OC,OB,AC,AB都是圆O的切线,OCA=OBA=90,OC=OB,又OA=OA,RtOCARtOBA(HL),OAC
9、=OAB,DAC=60,AOB=30,OA=2AB=6,圆O的直径为,故选D【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键2、B【分析】根据旋转的性质及抛物线的性质即可确定答案【详解】抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,2),所以在四个选项中,只有B选项符合题意故选:B【点睛】本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键3、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的
10、对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数”解答【详解】解:点P(3,2)关于原点O的对称点P的坐标是(3,2)故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键4、B【分析】连接OC根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC,和分别是所对的圆周角和圆心角,故选:B【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键5、C【分析】,进而求解的值【详解】解:由题意知故选C【点睛】本题考查了圆内接四边形中对角互补解题的关键在于根据角度之间的数量关系
11、求解6、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可【详解】人工湖面积尽量小,圆以AB为直径构造,设圆心为O,过点B作BC ,垂足为C,A,P分别位于B的西北方向和东北方向,ABC=PBC=BOC=BPC=45,OC=CB=CP=20,OP=40,OB=,最小的距离PE=PO-OE=40 - 20(m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键7、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得【详解】解:
12、,故选:B【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键8、B【分析】根据,点D、E分别是AB、AC的中点得出DAE=90,AD=AE=,可证DAB=EAC,再证DABEAC(SAS),可判断AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,根据AECADB,得出DBA=ECA,可证P=BAC=90,CP为A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在RtAEC中,CE=,可判断CP存在最大值为正确;AECADB,得出BD=CE=,在RtBPC中,BP最小=可判断BP存在最小值为不正确;取BC中点为O,连结AO,O
13、P,AB=AC=6,BAC=90,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,可求ACE=30,根据圆周角定理得出AOP=2ACE=60,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,可得ABD=30根据圆周角定理得出AOP=2ABD=60,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断点P运动的路径长为正确即可【详解】解:,点D、E分别是AB、AC的中点DAE=90,AD=AE=,DAB+BAE=90,BAE+EAC=90,DAB=EAC,在DAB和EAC中,DABEAC(SAS),故AECADB正确
14、;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,AECADB,DBA=ECA,PBA+P=ECP+BAC,P=BAC=90,CP为A的切线,AECP,DPE=PEA=DAE=90,四边形DAEP为矩形,AD=AE,四边形DAEP为正方形,PE=AE=3,在RtAEC中,CE=,CP最大=PE+EC=3+,故CP存在最大值为正确;AECADB,BD=CE=,在RtBPC中,BP最小=,BP最短=BD-PD=-3,故BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时si
15、nACE=,ACE=30,AOP=2ACE=60,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,ABD=30,AOP=2ABD=60,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,POP=POA+AOP=60+60=120,L故点P运动的路径长为正确;正确的是故选B【点睛】本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键9、B【分析】由切线的性质可推出,再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PA,PB是O的切线,A,B为
16、切点,在和中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质熟练掌握切线的性质是解答本题的关键10、D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D
17、【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、【分析】先由切线的性质得到OBC=90,再由平行四边形的性质得到BO=BC,则BOC=BCO=45,由OD=OB,得到ODB=OBD,由ODB+OBD=BOC,即可得到ODB=OBD=22.5,即BDC=22.5【详解】解:BC是圆O的切线,OBC=90,四边形ABCO是平行四边形,AO=BC,又AO=BO,BO=BC,BOC=BCO=45,OD=OB,ODB=OBD,ODB+OBD=BOC,ODB=OBD=22.5,即BD
18、C=22.5,故答案为:22.5【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键2、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.3、6【分析】依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法
19、求解即可;【详解】设直角三角形中能容纳最大圆的半径为:; 依据直角三角形的性质:可得斜边长为:依据直角三角形面积公式:,即为;内切圆半径面积公式:,即为;所以,可得:,所以直径为:;故填:6;【点睛】本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;4、4【分析】连接OB、OC,由题意易得BOC=60,则有BOC是等边三角形,然后问题可求解【详解】连接OB、OC,如图所示:A=30,BOC=60,OB=OC,BOC是等边三角形,即O的半径为4故答案为:4【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键5、2 2 【分析】关于原点对称的两个点的横纵坐标
20、都互为相反数,根据特点列式求出a、b即可求得答案【详解】解:点和点关于原点对称,故答案为:2;2【点睛】本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键三、解答题1、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5)【分析】(1)3=OC=OA=3OB,故点A、B、C的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;(3)分两种情况讨论,利用等腰直角三角形的性质,即可
21、求解【详解】解:(1)令x=0,则y=3,则点A的坐标为(3,0),根据题意得:OC=3=OA=3OB,故点B、C的坐标分别为:(-1,0)、(3,0),则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),把(3,0)代入得-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2+2x+3;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),则圆的半径为:;(3)过点A、C分别作直线AC的垂线,交抛物线分别为P、P1,设点P(x,-x2+2x+3),过点P作PQ轴于点Q,OA =OC,PAC=9
22、0,ACO=OAC=45,PAC=90,PAQ=45,PAQ 是等腰直角三角形,PQ=AQ=x,AQ+AO=x+3=-x2+2x+3,解得:(舍去),点P(1,4);设点P1(m,-m2+2m+3),过点P1作P1D轴于点D,同理得P1CD是等腰直角三角形,且点P1在第三象限,即m0,P1D=CD=m2-2m-3,DO=-m,DO+OC= P1D,即-m+3= m2-2m-3,解得:(舍去),点P(-2,-5);综上,点P(1,4)或(-2,-5)【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏2、(1
23、)A(-1,0),B(0,2);(2)点C的坐标(,);(3)求点F的坐标(1,2);点P的坐标(,)【分析】(1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;(2)设C的坐标为(x,x2),根据ACBC,得到,令t=x,解方程即可;(3)根据题意,得BPE=90,PB=PE即点P在线段BE的垂直平分线上,根据B,E都在抛物线上,则B,E是对称点,从而确定点P在抛物线的对称轴上,点F在BE上,且BEx轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;根据BE=3,BPE=90,PB=PE,确定P到BE的距离,即可写出点
24、P的坐标【详解】(1)令x=0,得y=2,点B的坐标为B(0,2);令y=0,得x2=0,解得 点A在x轴的负半轴;A点的坐标(-1,0);(2)设C的坐标为(x,x2),ACBC,A(-1,0),B(0,2),A(-1,0),B(0,2),即,设t=x,整理,得,解得点C在y轴右侧的抛物线上,此时y=,点C的坐标(,);(3)如图,根据题意,得BPE=90,PB=PE即点P在线段BE的垂直平分线上,B,E都在抛物线上,B,E是对称点,点P在抛物线的对称轴上,点F在BE上,且BEx轴,抛物线的对称轴为直线x=,B(0,2),点E(3,2),BE=3,EF=BO=2,BF=1,点F的坐标为(1,
25、2);如图,设抛物线的对称轴与BE交于点M,交x轴与点N,BE=3,BM=,BPE=90,PB=PE,PM=BM=,PM=BM=,PN=2-=,点P的坐标为(,)【点睛】本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键3、(1)OA,图形见详解;2; “转后距”为;(2)t的取值范围为t-5或0t2或【分析】(1)当时,记线段OA为图形M图形M绕原点逆时针旋转90得到图形即OA点C为图形N,求出OC=2最短距离;过点O作OFAC于F,先证OAC为等边三角形,OFAC,根据勾
26、股定理求出OF=即可;(2)点,点,可求tanOPQ=,得出当点P在x轴负半轴时,OPQ=120,当点P在x轴正半轴时,OPQ=60,得出CAB=ABC=30,分三种情况,当,当点P在点B右边,PB=t-4,BD1,列不等式,解得,当点P在点B左边B右边时,EPB=OPQ=60,PB=2PE21即4-t2解得t2,当t=0时,OA=2,AQ=2-1=1,t0,当点P在B左边,PB1,OB=OB=4,t-5即可【详解】解:(1)当时,记线段OA为图形M图形M绕原点逆时针旋转90得到图形即OA;点C为图形N,OC=2为图形M与图形N的“转后距”,“转后距”为2,故答案为2;线段AC为图形N,过点O
27、作OFAC于F,根据勾股定理OA=,AC=,OA=AC=OC=2,OAC为等边三角形,OFAC,AF=CF=1,OF=,“转后距”为;(2)点,点,tanOPQ=,当点P在x轴负半轴时,OPQ=120,当点P在x轴正半轴时,OPQ=60,CB=4-2=2=AC,ACO=60,CAB=ABC=30,分三种情况,当,当点P在点B右边,PB=t-4,BD1,BPsin601,解得;当点P在点B左边B右边时,EPB=OPQ=60,OEB=180-EPB-ABC=180-60-30=90,PB=4-t,PB=2PE21即4-t2,解得t2,当t=0时,点P与原点O重合,OA=2,AQ=2-1=1,t0,
28、0t2;当点P在B左边,PB1,OB=OB=4,t-5;综合t的取值范围为t-5或0t2或【点睛】本题考查图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理,掌握图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理是解题关键4、(1)20;(2);(3)AF= CF+BF,理由见解析【分析】(1)由ABC是等边三角形,得到AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,则BAE=BAC-EAD-CAD=2
29、0,AB=AE,CBF=ABE-ABC=20;(2)同(1)求解即可;(3)如图所示,将ABF绕点A逆时针旋转60得到ACG,先证明AEFACF得到AFE=AFC,然后证明AFE=AFC=60,得到BFC=120,即可证明F、C、G三点共线,得到AFG是等边三角形,则AF=GF=CF+CG=CF+BF【详解】解:(1)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,AC=AE, ,
30、AB=AE,;(3)AF= CF+BF,理由如下:如图所示,将ABF绕点A逆时针旋转60得到ACG,AF=AG,FAG=60,ACG=ABF,BF=CG在AEF和ACF中,AEFACF(SAS),AFE=AFC,CBF+BCF+BFD+CFD=180,CAF+CFA+ACD+CFD=180,BFD=ACD=60,AFE=AFC=60,BFC=120,BAC+BFC=180,ABF+ACF=180,ACG+ACF=180,F、C、G三点共线,AFG是等边三角形,AF=GF=CF+CG=CF+BF【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内
31、角和定理,熟知相关知识是解题的关键5、(1);(2)见解析;AE=AF+CE,证明见解析【分析】(1)根据“线段DA的延长线与线段BC相交于点E”可求解;(2)根据要求画出图形,即可得出结论;在AE上截取AH=AF,先证AFDAHC,再证CHE=HCE,即可得出结果【详解】(1)如图:AD只能在锐角EAF内旋转符合题意故的取值范围为:;(2)补全图形如下:(3)AE=AF+CE,证明:在AE上截取AH=AF,由旋转可得:AB=AD,D=ABF,ABC为等边三角形,AB=AC,BAC=ACB=60,AD=AC,DAF=CAH,AFDAHC,AFD=AHC,D=ACH,AFB=CHE,AFB+ABF=ACH+HCE=60,CHE+D=D+HCE=60,CHE=HCE,CE=HE,AE=AH+HE=AF+CE【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线