《初中数学一次函数的应用知识点.docx》由会员分享,可在线阅读,更多相关《初中数学一次函数的应用知识点.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、文本为Word版本,下载可任意编辑初中数学一次函数的应用知识点 一次函数的应用 一、分段函数问题 分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。 二、函数的多变量问题 解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻 求可以反映实际问题的函数 三、概括整合 (1)简单的一次函数问题: 建立函数模型的方法; 分段函数思想的应用。 (2)理清题意是采用分段函数解决问题的关键。 初中数学知识要领的积累为的就是在中考中可以充分的发挥出来。 初中数学知识点总结:平面直角坐标系 下面是对平面直角坐标系的内
2、容学习,希望同学们很好的掌握下面的内容。 平面直角坐标系 平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。 平面直角坐标系的要素: 在同一平面 两条数轴 互相垂直 原点重合 三个规定: 正方向的规定横轴取向右为正方向,纵轴取向上为正方向 单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。 象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。 相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望
3、同学们都能考试成功。 初中数学知识点:平面直角坐标系的构成 对于平面直角坐标系的构成内容,下面我们一起来学习哦。 平面直角坐标系的构成 在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。 通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。 初中数学知识点:点的坐标的性质 下面是对数学中点的坐标的性质知识学习,同学们认
4、真看看哦。 点的坐标的性质 建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。 对于平面内任意一点C,过点C分别向轴、轴作垂线,垂足在轴、轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。 一个点在不同的象限或坐标轴上,点的坐标不一样。 希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。 初中数学知识点:因式分解的一般步骤 关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。 因式分解的一般步骤 如果多项式有公因式就
5、先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式, 通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。 注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。 相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。 初中数学知识点:因式分解 下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。 因式分解 因式分解定义
6、:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。 因式分解要素: 结果必须是整式 结果必须是积的形式 结果是等式 因式分解与整式乘法的关系:m(a+b+c) 公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 公因式确定方法: 系数是整数时取各项最大公约数。 相同字母取最低次幂 系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。 提取公因式步骤: 确定公因式。 确定商式 公因式与商式写成积的形式。 分解因式注意; 不准丢字母 不准丢常数项注意查项数 双重括号化成单括号 结果按数单字母单项式多项式顺序排列 相同因式写成幂的形式 首项负号放括号外 括号内同类项合并。第 6 页 共 6 页