协整理论以及协整检验ppt课件.ppt

上传人:飞****2 文档编号:31917092 上传时间:2022-08-08 格式:PPT 页数:70 大小:1,021.50KB
返回 下载 相关 举报
协整理论以及协整检验ppt课件.ppt_第1页
第1页 / 共70页
协整理论以及协整检验ppt课件.ppt_第2页
第2页 / 共70页
点击查看更多>>
资源描述

《协整理论以及协整检验ppt课件.ppt》由会员分享,可在线阅读,更多相关《协整理论以及协整检验ppt课件.ppt(70页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、协整与误差修正模型协整与误差修正模型一、长期均衡与协整分析一、长期均衡与协整分析二、协整检验二、协整检验EGEG检验检验三、协整检验三、协整检验JJJJ检验检验四、误差修正模型四、误差修正模型一、长期均衡与协整分析一、长期均衡与协整分析Equilibrium and Cointegration1、问题的提出、问题的提出 经典回归模型(经典回归模型(classical regression modelclassical regression model)是建立在是建立在平稳数据变量基础上的,对于非平稳变量,不能使用经典平稳数据变量基础上的,对于非平稳变量,不能使用经典回归模型,否则会出现回归模型

2、,否则会出现虚假回归虚假回归等诸多问题。等诸多问题。 由于许多经济变量是非平稳的,这就给经典的回归分析方由于许多经济变量是非平稳的,这就给经典的回归分析方法带来了很大限制。法带来了很大限制。 但是,如果变量之间有着长期的稳定关系,但是,如果变量之间有着长期的稳定关系,即它们之间是即它们之间是协整的(协整的(cointegration)cointegration),则是可以使用经典回归模型方则是可以使用经典回归模型方法建立回归模型的。法建立回归模型的。 例如,中国居民人均消费水平与人均例如,中国居民人均消费水平与人均GDPGDP变量的例子变量的例子, , 从从经济理论上说,人均经济理论上说,人均

3、GDPGDP决定着居民人均消费水平,它们决定着居民人均消费水平,它们之间有着长期的稳定关系,即它们之间是协整的。之间有着长期的稳定关系,即它们之间是协整的。 经济理论指出,某些经济变量间确实存在着长期均衡关经济理论指出,某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状则均衡机制将会在下一期进行调整以使其重新回到均衡状态。态。 假设X与Y间的长期“均衡关系”由式描

4、述 2 2、长期均衡、长期均衡tttXY10该均衡关系意味着该均衡关系意味着: :给定X的一个值,Y相应的均衡值也随之确定为0+1X。 在在t-1期末,存在下述三种情形之一:期末,存在下述三种情形之一: Y等于它的均衡值:等于它的均衡值:Yt-1= 0 0+ + 1 1Xt ; Y小于它的均衡值:小于它的均衡值:Yt-1 0 0+ + 1 1Xt ; 在时期在时期t,假设,假设X有一个变化量有一个变化量 Xt,如果变量,如果变量X与与Y在时期在时期t与与t-1末期仍满足它们间的长期均衡关末期仍满足它们间的长期均衡关系,即上述第一种情况,则系,即上述第一种情况,则Y的相应变化量为的相应变化量为:

5、 :tttvXY1vt=t-t-1 如果如果t-1期末,发生了上述第二种情况,即期末,发生了上述第二种情况,即Y的的值小于其均衡值,则值小于其均衡值,则t期末期末Y的变化往往会比第的变化往往会比第一种情形下一种情形下Y的变化大一些;的变化大一些; 反之,如果反之,如果t-1期末期末Y的值大于其均衡值,则的值大于其均衡值,则t期期末末Y的变化往往会小于第一种情形下的的变化往往会小于第一种情形下的 Yt 。 可见,如果可见,如果Yt= = 0 0+ + 1 1Xt+ + t t正确地提示了正确地提示了X与与Y间的长期稳定的间的长期稳定的“均衡关系均衡关系”,则意味着,则意味着Y对对其均衡点的偏离从

6、本质上说是其均衡点的偏离从本质上说是“临时性临时性”的。的。 一个重要的假设就是一个重要的假设就是: :随机扰动项随机扰动项 t t必须是平必须是平稳序列。稳序列。如果如果 t t有随机性趋势(上升或下降),有随机性趋势(上升或下降),则会导致则会导致Y对其均衡点的任何偏离都会被长期对其均衡点的任何偏离都会被长期累积下来而不能被消除。累积下来而不能被消除。 式Yt= =0+1Xt+t中的随机扰动项也被称为非均非均衡误差(衡误差(disequilibrium error),它是变量X与Y的一个线性组合:tttXY10 如果如果X与与Y间的长期均衡关系正确,该式表述的非间的长期均衡关系正确,该式表

7、述的非均衡误差应是一平稳时间序列,并且具有零期望值,均衡误差应是一平稳时间序列,并且具有零期望值,即是具有即是具有0均值的均值的I(0)序列。序列。 非稳定的时间序列,它们的线性组合也可能成为非稳定的时间序列,它们的线性组合也可能成为平稳的。平稳的。称变量称变量X与与Y是协整的(是协整的(cointegrated)。)。3 3、协整、协整 如果序列如果序列XX1t1t,X,X2t2t, ,X,Xktkt 都是都是d d阶单整,存在向量阶单整,存在向量 =(=( 1 1, , 2 2, , , k k) ),使得,使得Z Zt t= = X XT T I(d-b)I(d-b), 其中,其中,b0

8、b0,X=(XX=(X1t1t,X,X2t2t, ,X,Xktkt) )T T,则认为序列,则认为序列XX1t1t,X,X2t2t, ,X,Xktkt 是是(d,b)(d,b)阶协整阶协整,记为,记为X XttCI(d,b)CI(d,b), 为协整向量(为协整向量(cointegrated vector)。)。 如果两个变量都是单整变量,只有当它们的单整如果两个变量都是单整变量,只有当它们的单整阶数相同时,才可能协整;如果它们的单整阶数阶数相同时,才可能协整;如果它们的单整阶数不相同,就不可能协整。不相同,就不可能协整。 3 3个以上的变量,如果具有不同的单整阶数,有个以上的变量,如果具有不同

9、的单整阶数,有可能经过线性组合构成低阶单整变量。可能经过线性组合构成低阶单整变量。) 2(),2(),1 (IUIVIWttt)0()1 (IePcWQIbUaVPtttttt)1 ,1(,)1 ,2(,CIPWCIUVtttt (d,d)阶协整是一类非常重要的协整关系,)阶协整是一类非常重要的协整关系,它的经济意义在于:它的经济意义在于:两个变量,虽然它们具有两个变量,虽然它们具有各自的长期波动规律,但是如果它们是(各自的长期波动规律,但是如果它们是(d,dd,d)阶协整的,则它们之间存在着一个长期稳定的阶协整的,则它们之间存在着一个长期稳定的比例关系。比例关系。 例如,中国例如,中国CPC

10、CPC和和GDPPCGDPPC,它们各自都是,它们各自都是2 2阶单整,如果阶单整,如果它们是它们是(2,2)(2,2)阶协整,说明它们之间存在着一个长期稳阶协整,说明它们之间存在着一个长期稳定的比例关系,从计量经济学模型的意义上讲,建立定的比例关系,从计量经济学模型的意义上讲,建立如下居民人均消费函数模型是合理的。如下居民人均消费函数模型是合理的。tttGDPPCCPC10 尽管两个时间序列是非平稳的,也可以用经典尽管两个时间序列是非平稳的,也可以用经典的回归分析方法建立回归模型。的回归分析方法建立回归模型。 从这里,我们已经初步认识到:从这里,我们已经初步认识到:检验变量之检验变量之间的协

11、整关系,在建立计量经济学模型中是非常间的协整关系,在建立计量经济学模型中是非常重要的。重要的。 而且,从变量之间是否具有协整关系出发选而且,从变量之间是否具有协整关系出发选择模型的变量,其数据基础是牢固的,其统计性择模型的变量,其数据基础是牢固的,其统计性质是优良的质是优良的。二、协整检验二、协整检验EG检验检验 1 1、两变量的、两变量的Engle-GrangerEngle-Granger检验检验 为了检验两变量Yt,Xt是否为协整,Engle和Granger于1987年提出两步检验法,也称为EG检验。 第一步,第一步,用OLS方法估计方程 Yt= =0+1Xt+t并计算非均衡误差,得到:

12、tttttYYeXY10称为协整回归协整回归( (cointegrating)或静态回归静态回归( (static regression) )。 第第二二步步,检验 et的单整性。如果 et为稳定序列,则认为变量Y Xtt,为(1,1)阶协整; 如果 et为1阶单整, 则认为变量Y Xtt,为(2,1)阶协整; 。 非均衡误差的单整性的检验方法仍然是非均衡误差的单整性的检验方法仍然是DFDF检验检验或者或者ADFADF检验。检验。 需要注意是需要注意是,这里的,这里的DF或或ADF检验是针对协检验是针对协整回归计算出的误差项,而非真正的非均衡误整回归计算出的误差项,而非真正的非均衡误差。差。

13、而而OLS法采用了残差最小平方和原理,因此法采用了残差最小平方和原理,因此估估计量计量 是向下偏倚的是向下偏倚的,这样将导致拒绝零假设,这样将导致拒绝零假设的机会比实际情形大。的机会比实际情形大。 于是对于是对e et t平稳性检验的平稳性检验的DFDF与与ADFADF临界值应该比临界值应该比正常的正常的DFDF与与ADFADF临界值还要小。临界值还要小。 MacKinnon(1991)通过模拟试验给出了协整检验的临界值。 表表 9.3.1 双双变变量量协协整整 ADF 检检验验临临界界值值 显 著 性 水 平 样本容量 0.01 0.05 0.10 25 -4.37 -3.59 -3.22

14、50 -4.12 -3.46 -3.13 100 -4.01 -3.39 -3.09 -3.90 -3.33 -3.05 例例 检验中国居民人均消费水平检验中国居民人均消费水平CPCCPC与人均国内生产总与人均国内生产总值值GDPPCGDPPC的协整关系。的协整关系。 已知CPC与GDPPC都是I(2)序列,已知它们的回归式 ttGDPPCCPC45831. 0764106.49R2=0.9981 对该式计算的残差序列作ADF检验,适当检验模型为: 31127. 249. 155. 1tttteeee (-4.47) (3.93) (3.05) LM(1)=0.00 LM(2)=0.00 t=

15、-4.47-3.75=ADF0.05,拒绝存在单位根的假设,残差项是平稳的。因此中国居民人均消费水平与人均中国居民人均消费水平与人均GDPGDP是是(2,2)(2,2)阶协整的,说明了该两变量间存在长期稳定的阶协整的,说明了该两变量间存在长期稳定的“均衡均衡”关关系。系。 2 2、多变量协整关系的检验、多变量协整关系的检验扩展的扩展的E-GE-G检验检验 多变量协整关系的检验要比双变量复杂一些,主要在于协整变量间可能存在多种稳定的线性组合协整变量间可能存在多种稳定的线性组合。 假设有4个I(1)变量Z、X、Y、W,它们有如下的长期均衡关系:tttttYXWZ3210非均衡误差项t应是I(0)序

16、列: tttttYXWZ3210 然而,如果Z与W,X与Y间分别存在长期均衡关系:tttvWZ110tttvYX210 则非均衡误差项v1t、v2t一定是稳定序列I(0)。于是它们的任意线性组合也是稳定的。例如tttttttYXWZvvv110021 由于vt象t一样,也是Z、X、Y、W四个变量的线性组合,由此vt 式也成为该四变量的另一稳定线性组合。 (1, -0,-1,-2,-3)是对应于t 式的协整向量,(1,-0-0,-1,1,-1)是对应于vt式的协整向量。 一定是I(0)序列。 检验程序:检验程序:对于多变量的协整检验过程,基本与双变量情形相对于多变量的协整检验过程,基本与双变量情

17、形相同同,即需检验变量是否具有同阶单整性,以及是否即需检验变量是否具有同阶单整性,以及是否存在稳定的线性组合存在稳定的线性组合。在检验是否存在稳定的线性组合时在检验是否存在稳定的线性组合时,需通过设置一个变量为被解释变量,其他变量为解释变量,进行OLS估计并检验残差序列是否平稳。如果不平稳如果不平稳,则需更换被解释变量,进行同样的OLS估计及相应的残差项检验。 当所有的变量都被作为被解释变量检验之后,当所有的变量都被作为被解释变量检验之后,仍不能得到平稳的残差项序列,则认为这些变仍不能得到平稳的残差项序列,则认为这些变量间不存在(量间不存在(d,dd,d)阶协整。)阶协整。 检验残差项是否平稳

18、的检验残差项是否平稳的DF与与ADF检验临界值要比通常检验临界值要比通常的的DF与与ADF检验临界值小,而且该临界值还受到所检验检验临界值小,而且该临界值还受到所检验的变量个数的影响。的变量个数的影响。表表 9.3.2 多变量协整检验多变量协整检验 ADF 临界值临界值变量数=3变量数=4变量数=6样本显著性水平显著性水平显著性水平容量0.010.050.10.010.050.10.010.050.125-4.92-4.1-3.71 -5.43-4.56 -4.15 -6.36-5.41 -4.9650-4.59 -3.92-3.58 -5.02-4.32 -3.98 -5.78-5.05 -

19、4.69100-4.44 -3.83-3.51 -4.83-4.21 -3.89 -5.51-4.88 -4.56-4.30 -3.74-3.45 -4.65-4.1 -3.81 -5.24-4.7 -4.42 MacKinnon(1991)通过模拟试验得到的不同变量协整检验的临界值。三、协整检验三、协整检验JJJJ检验检验 JJ JJ检验的原理检验的原理 Johansen于于1988年,以及与年,以及与Juselius一起于一起于1990年提出了一种用向量自回归模型进行检验年提出了一种用向量自回归模型进行检验的方法,通常称为的方法,通常称为Johansen检验,或检验,或JJ检验,检验,是一

20、种进行多重是一种进行多重I(1)序列协整检验的较好方法序列协整检验的较好方法。 没有移动平均项的向量自回归模型表示为:没有移动平均项的向量自回归模型表示为: tptpttyyy11tjtjpjtyy1ttjtpjjt11yyy差分Yt为为M个个I(1)过程构成的向量过程构成的向量 I(0)过程I(0)过程只有产生协整,才能保证新生误差是平稳过程 将将y的协整问题转变为讨论矩阵的协整问题转变为讨论矩阵的性质问题的性质问题ttjtpjjt11yyy 于是,将于是,将yt中的协整检验变成对矩阵中的协整检验变成对矩阵的分析问题。的分析问题。这就是这就是JJ检验的基本原理。检验的基本原理。 两种检验方法

21、:两种检验方法:特征值轨迹检验特征值轨迹检验最大特征值检验最大特征值检验 JJ JJ检验的预备工作检验的预备工作 第一步:第一步:用用OLSOLS分别估计下式中的每一个方程,分别估计下式中的每一个方程,计算残差,得到残差矩阵计算残差,得到残差矩阵S S0 0,为一个,为一个(M(MT)T)阶阶矩阵。矩阵。 tjtpjjtyy1MTMMTT212222111211 第一步:第一步:用用OLSOLS分别估计下式中的每一个方程,分别估计下式中的每一个方程,计算残差,得到残差矩阵计算残差,得到残差矩阵S S1 1,也为一个,也为一个(M(MT)T)阶矩阵。阶矩阵。 tjtpjjtyy11 第三步:第三

22、步:构造上述残差矩阵的积矩阵:构造上述残差矩阵的积矩阵: 00100SSRT10101SSRT01110SSRT11111SSRT 第四步:第四步:计算有序特征值和特征向量。计算有序特征值和特征向量。 第五步:第五步:设定似然函数。设定似然函数。 JJ JJ检验之一检验之一特征值轨迹检验特征值轨迹检验 服从Johansen分布。被称为特征值轨迹统计量。 1, 2 , 1 , 0)1ln()(1MrTrMMrii ,一直检验下去,直到出现第一个不显著的,一直检验下去,直到出现第一个不显著的(Mr)为止,说明存在为止,说明存在r个协整向量。这个协整向量。这r个个协整向量就是对应于最大的协整向量就是

23、对应于最大的r个特征值的经过个特征值的经过正规化的特征向量。正规化的特征向量。 JJ JJ检验之一检验之一最大特征值检验最大特征值检验 该统计量被称为最大特征值统计量。于是该检验被称为最大特征值检验。 )1ln()1(rTr 由 Johansen和Juselius于1990年计算得到 Johansen分布临界值表。 JJJJ检验实例检验实例 GDP、CONSR、CONSP、INV取对数后为取对数后为I(1)序序列。即列。即lnGDP、lnCONSR、lnCONSP、lnINV。 对它们之间的协整关系进行检验。对它们之间的协整关系进行检验。两种方法的结论是一致的。两种方法的结论是一致的。如何处理

24、高阶单整序列?如何处理高阶单整序列? 从理论上讲。从理论上讲。JJ JJ 检验只适用于多个检验只适用于多个1 1阶单整序列。阶单整序列。 多个同阶高阶单整序列,差分为多个同阶高阶单整序列,差分为1 1阶后再检验,显阶后再检验,显然是可行的。然是可行的。但是意义发生变化但是意义发生变化。 没有看到关于高阶多重协整检验的文献,难度太大。没有看到关于高阶多重协整检验的文献,难度太大。 能否先检验,然后建立均衡方程,通过对误差项的能否先检验,然后建立均衡方程,通过对误差项的单位根检验以判断发生何种协整?单位根检验以判断发生何种协整?未见经典未见经典。如何选择截距和时间趋势项?如何选择截距和时间趋势项?

25、 分别考虑分别考虑CE和和VAR中是否有截距和时间趋势中是否有截距和时间趋势项项 作为假设作为假设 显著性检验显著性检验 重新检验重新检验 对协整关系检验结果无显著影响(检验统计量对协整关系检验结果无显著影响(检验统计量发生变化,但临界值同时发生变化)发生变化,但临界值同时发生变化)如何在多个协整关系中作出选择?如何在多个协整关系中作出选择? 一般选择对应于最大特征值的第一般选择对应于最大特征值的第1个协整关系个协整关系 从应用的目的出发选择从应用的目的出发选择四、误差修正模型四、误差修正模型Error Correction Model, ECM1 1、一般差分模型的问题、一般差分模型的问题

26、对于非稳定时间序列,可通过差分的方法将其对于非稳定时间序列,可通过差分的方法将其化为稳定序列,然后才可建立经典的回归分析化为稳定序列,然后才可建立经典的回归分析模型。模型。tttXY10tttvXY11tttv模型只表达了模型只表达了X与与Y间的短期关间的短期关系,而没有揭示它们间的长期关系,而没有揭示它们间的长期关系系。关于变量水平值的重要信息关于变量水平值的重要信息将被忽略。将被忽略。误差项t不存在序列相关, t是一个一阶移动平均时间一阶移动平均时间序列序列,因而是序列相关的。是序列相关的。2 2、误差修正模型、误差修正模型 是一种具有特定形式的计量经济学模型,它的是一种具有特定形式的计量

27、经济学模型,它的主要形式是由主要形式是由DavidsonDavidson、 HendryHendry、SrbaSrba和和YeoYeo于于19781978年提出的,称为年提出的,称为DHSYDHSY模型。模型。tttXY10tttttYXXY11210tttttttttXYXYXXY12101111211011)1 ()1 ()(tttttXYXY)(11011由于现实经济中很少处在均衡点上,假设具有(1, 1)阶分布滞后形式 Y Y的变化决定于的变化决定于X X的变化以及前一时期的非均衡的变化以及前一时期的非均衡程度程度。 一阶误差修正模型一阶误差修正模型( (first-order err

28、or correction model) )的形式:的形式:tttttXYXY)(11011ttttecmXY11若若(t-1)(t-1)时刻时刻Y Y大于其长期均衡解大于其长期均衡解 0 0+ + 1 1X X,ecmecm为正,则为正,则(-(- ecm)ecm)为负,使得为负,使得 Y Yt t减少;减少;若若(t-1)(t-1)时刻时刻Y Y小于其长期均衡解小于其长期均衡解 0 0+ + 1 1X X ,ecmecm为负,为负,则则(-(- ecm)ecm)为正,使得为正,使得 Y Yt t增大。增大。体现了长期非均衡误差对短期变化的控制。体现了长期非均衡误差对短期变化的控制。 复杂的

29、复杂的ECM形式形式,例如:,例如:tttttttYYXXXY2211231210tttttttXYXXYY)(110113112tttttttYZZXXY11211210tttttttZXYZXY)(12110111 误差修正模型的优点:误差修正模型的优点:如: a)一阶差分项的使用消除了变量可能存在的趋势因素,从而避免了虚假回归问题; b)一阶差分项的使用也消除模型可能存在的多重共线性问题; c)误差修正项的引入保证了变量水平值的信息没有被忽视; d)由于误差修正项本身的平稳性,使得该模型可以用经典的回归方法进行估计,尤其是模型中差分项可以使用通常的t检验与F检验来进行选取;等等。3 3、

30、误差修正模型的建立、误差修正模型的建立 Granger 表述定理表述定理(Granger representaion theorem) Engle 与与 Granger 1987年提出年提出 如果变量如果变量X X与与Y Y是协整的,则它们间的短期非均是协整的,则它们间的短期非均衡关系总能由一个误差修正模型表述。衡关系总能由一个误差修正模型表述。tttecmXYlaggedY1),(模型中没有明确指出Y与X的滞后项数,可以是多阶滞后;由于一阶差分项是I(0)变量,因此模型中允许采用X的非滞后差分项Xt 。 建立误差修正模型建立误差修正模型,需要: 首先首先对变量进行协整分析,以发现变量之间的协

31、整关系,即长期均衡关系,并以这种关系构成误差修正项。 然后然后建立短期模型,将误差修正项看作一个解释变量,连同其它反映短期波动的解释变量一起,建立短期模型,即误差修正模型。 Engle-Granger两步法两步法 第一步第一步,进行协整回归(OLS法),检验变量间的协整关系,估计协整向量(长期均衡关系参数); 第二步第二步,若协整性存在,则以第一步求到的残差作为非均衡误差项加入到误差修正模型中,并用OLS法估计相应参数。 需要注意的是需要注意的是:在进行变量间的协整检验时,如有必要可在协整回归式中加入趋势项,这时,对残差项的稳定性检验就无须再设趋势项。 另外另外,第二步中变量差分滞后项的多少,

32、可以残差项序列是否存在自相关性来判断,如果存在自相关,则应加入变量差分的滞后项。 经济理论指出,居民消费支出是其实际收入的函数。 以中国国民核算中的居民消费支出经过居民消费价格指居民消费支出经过居民消费价格指数缩减得到中国居民实际消费支出时间序列(数缩减得到中国居民实际消费支出时间序列(C); 以支出法GDP对居民消费价格指数缩减近似地代表国对居民消费价格指数缩减近似地代表国民收入时间序列民收入时间序列(GDP)。 时间段为19782000(表9.3.3) 例例 中国居民消费的误差修正模型 表表 9.3.3 19781998 年年间间中中国国实实际际居居民民消消费费与与实实际际 GDP 数数据

33、据(单单位位:亿亿元元,1990 年年价价) 年份 C GDP 年份 C GDP 年份 C GDP 1978 3810 7809 1985 7579 14521 1992 11325 23509 1979 4262 8658 1986 8025 15714 1993 12428 27340 1980 4581 8998 1987 8616 17031 1994 13288 29815 1981 5023 9454 1988 9286 17889 1995 14693 31907 1982 5423 10380 1989 8788 16976 1996 16189 34406 1983 5900

34、 11265 1990 9113 18320 1997 17072 36684 1984 6633 12933 1991 9977 20581 1998 18230 39008 (1 1)对数据)对数据lnC与与lnGDP进行单整检验进行单整检验 容易验证lnC与lnGDP是一阶单整的,它们适合的检验模型如下: 12ln744. 0056. 0lnttCC (2.76) (-3.23) LM(1)=0.929 LM(2)=1.121 32221212ln58. 0ln59. 0ln81. 0ln54. 113. 0lntttttGDPGDPGDPGDPGDP (3.81)(-4.01) (2.

35、66) (2.26) (2.54) LM(1)=0.38 LM(2)=0.67 LM(3)=2.34 LM(4)=2.46 首先,建立首先,建立lnC与与lnGDP的回归模型的回归模型(2)检验)检验lnC与与lnGDP的协整性,并建立长期均衡关系的协整性,并建立长期均衡关系 ttGDPCln923. 0047. 0ln (0.30) (57.48) R2=0.994 DW=0.744 发现有残关项有较强的一阶自相关性。考虑加入适当的滞后项,得lnC与lnGDP的分布滞后模型 11ln361. 0ln622. 0ln698. 0152. 0lnttttGDPCGDPC (1.63) (6.62

36、) (4.92) (-2.17) R2=0.994 DW=1.92 LM(1)=0.00 LM(2)=2.31自相关性消除,因此可初步认为是lnC与lnGDP的长期稳定关系。 残差项的稳定性检验:残差项的稳定性检验: (-4.32) R2=0.994 DW=2.01 LM(1)=0.04 LM(2)=1.3419975. 0ttee t=-4.32-3.64=ADF0.05 说明lnC与lnGDP是(1,1)阶协整的,下式即为它们长期稳定的均衡关系: 11ln361. 0ln622. 0ln698. 0152. 0lnttttGDPCGDPC 以稳定的时间序列(3)建立误差修正模型)建立误差修

37、正模型 te 做为误差修正项,可建立如下误差修正模型误差修正模型: :111163. 1ln484. 0ln784. 0ln686. 0lnttttteGDPCGDPC (6.96) (2.96) (-1.91) (-3.15) R2=0.994 DW=2.06 LM(1)=0.70 LM(2)=2.04由式 可得lnC关于lnGDP的长期弹性: (0.698-0.361)/(1-0.622)=0.892;由(*)式可得lnC关于lnGDP的短期弹性:0.68611ln361. 0ln622. 0ln698. 0152. 0lnttttGDPCGDPC(*) 用打开误差修正项括号的方法直接估计

38、误差修正模型打开误差修正项括号的方法直接估计误差修正模型,适当估计式为: (1.63)(6.62) (-2.99) (2.88) R2=0.791 =0.0064 DW=1.93 LM(2)=2.31 LM(3)=2.78 11ln337. 0ln378. 0ln698. 0153. 0lnttttGDPCGDPC写成误差修正模型的形式如下 )ln892. 0405. 0(ln378. 0ln698. 0ln11ttttGDPCGDPC 由上式知,lnC关于lnGDP的短期弹性为0.698,长期弹性为0.892。 可见两种方法的结果非常接近两种方法的结果非常接近。 (4)预测)预测由式11ln

39、361. 0ln622. 0ln698. 0152. 0lnttttGDPCGDPC给出1998年关于长期均衡点的偏差:98 e=ln(18230)-0.152-0.698ln(39008)-0.662ln(17072) +0.361ln(36684)= 0.0125 由式111163. 1ln484. 0ln784. 0ln686. 0lnttttteGDPCGDPC预测1999年的短期波动: lnC99=0.686(ln(41400)-ln(39008)+0.784(ln(18230)-ln(17072) -0.484(ln(39008)-ln(36684)-1.1630.0125= 0.

40、048于是 859. 9)18230ln(048. 0ln048. 0ln9899CC19125859. 999 eC按照式预测的结果为: lnC99=0.698(ln(41400)-ln(39008)-0.378(ln(18230)-0.405 -0.892ln(39008)=0.051)ln892. 0405. 0(ln378. 0ln698. 0ln11ttttGDPCGDPC861. 9)18230ln(051. 0ln051. 0ln9899CC19176861. 999 eC 以当年价计的1999年实际居民消费支出为39334亿元,用居民消费价格指数(1990=100)紧缩后约为19697亿元,两个预测结果的相对误差分别为两个预测结果的相对误差分别为2.9%与与2.6%。 于是

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁