《2022年高中数学《抛物线》练习题 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学《抛物线》练习题 .pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习好资料欢迎下载高中数学抛物线练习题一、选择题:1. (浙江 )函数 yax21 的图象与直线 yx 相切,则 a( ) (A) 18(B)41(C) 21(D)1 2. (上海 )过抛物线xy42的焦点作一条直线与抛物线相交于A、B 两点,它们的横坐标之和等于5,则这样的直线()A有且仅有一条B有且仅有两条C有无穷多条D不存在3. 抛物线24xy 上一点A的纵坐标为4,则点A与抛物线焦点的距离为( ) (A) 2 (B) 3 (C) 4 (D) 5 4. (辽宁卷)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线xy42的准线重合,则该双曲线与抛物线xy42的交点到原点的距离是(
2、)A 23+6B21C21218D21 5 .(江苏卷) 抛物线 y=42x上的一点M 到焦点的距离为1,则点 M 的纵坐标是 ( ) ( A ) 1617( B ) 1615( C ) 87( D ) 0 6. (湖北卷)双曲线)0(122mnnymx离心率为2,有一个焦点与抛物线xy42的焦点重合,则mn的值为()A163B83C316D38二、填空题:7顶点在原点,焦点在x 轴上且通径长为6 的抛物线方程是. 8若抛物线mxxy2212的焦点在x 轴上,则m 的值是. 9过( 1,2)作直线与抛物线xy42只有一个公共点,则该直线的斜率为. 10抛物线22xy为一组斜率为2 的平行弦的中
3、点的轨迹方程是. 三、解答题:11. (江西卷) 如图,M 是抛物线上y2=x 上的一点, 动弦 ME、MF 分别交 x 轴于 A、B 两点,且MA=MB. (1)若 M 为定点,证明:直线EF 的斜率为定值;(2)若 M 为动点,且EMF=90 ,求 EMF 的重心 G 的轨迹12.(上海 )本题共有3 个小题 ,第 1 小题满分4 分, 第 2 小题满分 6 分, 第 3 小题满分6 分.xyO ABEFM名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 5 页 - -
4、 - - - - - - - 学习好资料欢迎下载已知抛物线y2=2px(p0) 的焦点为 F,A 是抛物线上横坐标为4、且位于x 轴上方的点 ,A 到抛物线准线的距离等于5,过 A 作 AB 垂直于 y 轴,垂足为 B,OB 的中点为M. (1)求抛物线方程; (2)过 M 作 MN FA, 垂足为 N,求点 N 的坐标 ; (3)以 M 为圆心 ,MB 为半径作圆M.当 K(m,0) 是 x 轴上一动点时,丫讨论直线AK 与圆 M 的位置关系 . 当 m0) 则直线 MF 的斜率为 k,方程为200().yyk xy由2002()yyk xyyx,消200(1)0 xkyyyky得解得200
5、21(1),FFkykyyxkk0022000022211214(1)(1)2EFEFEFkykyyykkkkkykykyxxykkk(定值 ) 所以直线EF 的斜率为定值(2)90,45 ,1,EMFMABk当时所以直线 ME 的方程为200()yyk xy由2002yyxyyx得200(1) ,1)Eyy同理可得200(1) , (1).Fyy设重心 G(x, y) ,则有222200000000(1)(1)23333(1)(1)333MEFMEFyyyyxxxxyyyyxxxx消去参数0y得2122().9273yxx4. 解(1) 抛物线 y2=2px 的准线为x=-2p,于是 4+2
6、p=5, p=2.抛物线方程为y2=4x.(2)点 A 是坐标是 (4,4), 由题意得B(0,4),M(0,2), 又 F(1,0), kFA=34;MN FA, kMN=-43, x y O A B 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 5 页 - - - - - - - - - 学习好资料欢迎下载则 FA 的方程为y=34(x-1),MN 的方程为y-2=-43x,解方程组得x=58,y=54, N 的坐标 (58,54).(1) 由题意得 , ,圆 M.
7、的圆心是点 (0,2), 半径为 2, 当 m=4 时, 直线 AK 的方程为x=4,此时 ,直线 AK 与圆 M 相离 . 当 m4 时, 直线 AK 的方程为y=m44(x-m),即为 4x-(4-m)y-4m=0, 圆心 M(0,2) 到直线 AK 的距离 d=2)4(1682mm,令 d2,解得 m1当 m1 时, AK 与圆 M 相离 ; 当 m=1 时, AK 与圆 M 相切 ; 当 m1 时 , AK 与圆 M 相交 . 8. 解: ()FlFAFBAB、两点到抛物线的准线的距离相等,抛物线的准线是x轴的平行线,1200yy,依题意12yy,不同时为0上述条件等价于2212121
8、2120yyxxxxxx12xx上述条件等价于120 xx即当且仅当120 xx时,l经过抛物线的焦点F。()设l在y轴上的截距为b,依题 意得l的方程为2yxb;过点AB、的 直线方程可写为12yxm,所以12xx、满足方程21202xxm得1214xxAB、为抛物线上不同的两点等价于上述方程的判别式1804m,即132m13.解: (I)设 AOB 的重心为G(x,y),A(x1,y1),B(x2,y2),则332121yyyxxx(1)OA OB 1OBOAkk,即12121yyxx, (2)又点 A,B 在抛物线上,有222211,xyxy,代入( 2)化简得121xx32332)3(
9、312)(31)(3132221221222121xxxxxxxxyyy所以重心为G 的轨迹方程为3232xy(II)22212122222122212222212121)(21|21yyyxyxxxyxyxOBOASAOB由( I)得12212)1(2212221221662616261xxxxSAOB名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 5 页 - - - - - - - - - 学习好资料欢迎下载当且仅当6261xx即121xx时,等号成立。所以 AOB 的面积存在最小值,存在时求最小值1;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 5 页 - - - - - - - - -