《2.5有理数乘法(1).doc》由会员分享,可在线阅读,更多相关《2.5有理数乘法(1).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、案例 2.5 有理数的乘法【课题】:义务育课程标准实验教科书数学(苏教版)七年级上册第二章 有理数 第2.5节有理数的乘法(第1课时)江苏教育学院附属中学 王菠总体思路: “有理数的乘法”一共有两课时.第一课时重点让学生探索有理数的乘法的法则,并会应用法则进行乘法运算;第二课时能用乘法运算律简化运算,这里是第一课时的设计教案.根据新课标的要求,力求体现让学生在实际背景中理解有理数的乘法法则,本节课采用“创设问题情境建立模型探索、归纳、应用与发展”的教学模式展开. 问题情境是学生熟悉的水库水位的变化,以学生为主体,同时教师采取启发、引导、探索相结合的教学方法,建立模型,使学生经历实际问题抽象为数
2、学问题的过程,引导学生有条理地、清晰地阐述自己的观点,得出有理数的乘法法则,使学生体验到成功的喜悦.教学目标: 1、知识技能目标: (1) 理解有理数的乘法法则的概念,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性; (2) 根据有理数乘法法则能进行有理数的乘法运算,探索和掌握多个有理数相乘的积的符号法则. 2、过程性目标:通过探索有理数乘法法则的过程,培养学生的观察、归纳、猜想、验证的能力;渗透数形结合、分类讨论的思想方法. 3、情感与态度目标: 通过有理数乘法“模型”的建立与解释,使学生初步认识数学与生活的联系;体验得出法则的喜悦,建立学好数学的自信心.教
3、学重点: 探索有理数的乘法的法则,并会应用法则进行乘法运算.教学难点:探索、归纳、概括乘法法则;有理数相乘的符号确定.教学过程:一、 情境创设:通过了前两节课的学习,我们学习和掌握了有理数的加减运算,减法运算实际上就是加法运算.这为学习乘法运算奠定了基础.情景1: (3)(+2)=?如何进行有理数的乘法运算?有法则吗?是什么?和小学里的乘法一样吗?有什么不同之处?设计意图:通过设置了含有负数的乘法算式和问题串,让学生意识到中学的有理数的乘法与小学的乘法有着不同之处,激发学生解决问题的兴趣. 当然这里不需要学生立即回答,让学生带着问题去学习、思考,提高学习效率.情景2:(给学生展示一幅某水库图片
4、) 水库水位的变化:今天水位3天后3天前(1)如果水位每天上升4cm,那么3天后的水位比今天高还是低?高(或低)多少? 高12cm(2)如果水位每天上升4cm,那么3天前的水位比今天高还是低?高(或低)多少? 低12cm今天水位3天前3天后(3)如果水位每天下降4cm,那么3天后的水位比今天高还是低?高(或低)多少? 低12cm(4)如果水位每天下降4cm,那么3天前的水位比今天高还是低?高(或低)多少? 高12cm设计意图:数学是源于生活的一门学科,开始创设大家熟悉的问题情境:水库的水位的变化。一方面激发学生的学习兴趣,另一方面从生活经验去分析问题,借助于图形,为建立模型做准备。.二、探索活
5、动1、 用正数和负数表示相关的量 在这里有两组相反意义的量:上升和下降;几天前和几天后;这两组量影响着水位的变化.一般的我们把上升记为正,下降记为负; 几天后记为正,几天前记为负.则以上4个小问题的答案可以用算式表示出来,如何写?今天水位3天后3天前(1)如果水位每天上升4cm,那么3天后的水位比今天高还是低?高(或低)多少? (+4)(+3)=12(cm) 2天后呢?1天后呢?是多少?如何列算式? 2天后 (+4)(+2)=8(cm) 1天后 (+4)(+1)=4(cm)(2)如果水位每天上升4cm,那么3天前的水位比今天高还是低?高(或低)多少? (+4)(3)=12(cm) 2天前呢?1
6、天前呢?是多少?如何列算式? 2天前 (+4)(2)=8(cm) 1天前 (+4)(1)=4(cm)今天水位3天前3天后(3)如果水位每天下降4cm,那么3天后的水位比今天高还是低?高(或低)多少?2天后呢?1天后呢?(4)如果水位每天下降4cm,那么3天前的水位比今天高还是低?高(或低)多少?2天前呢?1天前呢?(第3和4题学生动手列算式,请2个同学上黑板)设计意图:通过水位变化问题为主线,让学生积极思考变化的过程,引导学生根据生活经验,建立模型,合理分类,列出算式,参与活动的过程中,学会“做数学”. 2、归纳法则:(+4)(+3)= +12 (4)( 3)= +12(+4)(+2) = 8
7、 (4)(2) = 8 (+4)(+1)= 4 (4)( 1)= 4 (+4)( 1)= 4 (4)(+1) =4 (+4)( 2)= 8 (4)(+2)= 8 (+4)(3) = 12 (4)(+3)= 12假如天数没变化,水位发生变化吗?算式如何列呢?(+4)0= 0 (4)0= 0 问:2个有理数相乘,积的符号怎么确定?积的绝对值怎么确定?(先让学生思考,再让学生交流讨论) 有理数乘法(multiplication)法则两数相乘,同号得正 ,异号得负 ,并把绝对值相乘;任何数与0相乘都得 0 . 关键是确定符号!设计意图:根据以上的算式,由学生观察、猜想、验证与交流等活动形成对有理数乘法
8、法则的理解和掌握,锻炼了学生的综合能力,在这一过程中学生要总结、概括、整理出乘法法则,同时要对两数相乘的同号和异号进行分类,加深学生对分类讨论思想掌握. 三、运用数学知识解决问题:例1 计算: (1) 96 ; (2) (9)6 ; (3) 3 (-4) ; (4) (-3)(-4);绝对值相乘确定积的符号 解题后的反思:求解中的第一步是 ;第二步是 .设计意图:对有理数乘法法则的简单运用,明确在计算过程中先确定符号,在计算。强调书写的格式.四、练习与反馈:1、计算: (1) (7)6 ; (2) (48) (3); (3)(-6.5)(-7.2); (请4位同学上黑板)2、计算:(口算) (
9、1) (2)4 (2) (48) 0 (3)(-5)(-7) (4)8 (-2)(5) (6) (-3) 7设计意图:及时练习巩固法则,记忆法则.333、填空: (2) = 6 (3) = 9 0 (5) = 0设计意图:还是考察了有理数乘法法则概念,明确先确定符号.在学生回答过程中,会出现运用除法运算,但是除法运算还没有学过,教师在此时及时引导运用乘法法则去解决问题.4、请你举一个符合算式(-3)(+2)的实际意义.设计意图:乘法法则的得出是源于生活的事例, 本题考察了对有理数乘法法则合理性的解释. 学生易得到算式结果,但对算式赋予实际意义,学生有些难度. 本题充分发展了学生的思维,开阔了思
10、维,. 实践证明学生在充分思考后,回答很出色,不乏有闪亮点.5、请用“”,“”,“”填空: (-4)(+3) (-2) 0 (-8)(-1)(-2)(+3) 0 (-2)(-4)(-5)(-6) 0 (-1)(-2)(-3)(-4)(+3)(-5) 0 (-1)10(-1)1 0根据以上结果,你发现了什么规律?(先思考,在交流,归纳总结)负因数的个数乘积的符号的确定几个有理数相乘, 因数都不为 0 时, 积的符号由 确定; 当有奇数个负因数时,积为负; 当有偶数个负因数时,积为正. 有一因数为 0 时,积是0设计意图:本题探索多个有理数相乘的积的符号法则. 先设置填空,比较几个有理数相乘的积与
11、0的大小(先让学生思考),刚开始学生有些困难,但是发现积的符号与负因数的个数有关,能很快回答出答案,这符合学生的认知规律. 但是此时学生归纳出结论还有些困难,大家都能说一点,所以给学生交流讨论,学生能完整地总结出结论.,体验得出结论的喜悦,建立学好数学的自信心.6、计算:5(1) 8 (2) (-5); (2) (4) ( 3) (6)设计意图:及时练习巩固多个有理数相乘的结论,记忆结论;明确首先先确定符号.五、小结与思考:1、数的乘法与小学的(正数)的乘法有什么联系和不同点?2、1、 今天你学到了什么?有什么收获?3、你还有什么问题吗?需要老师和大家的帮忙吗?六、开拓升华小华有7张写着不同数
12、字的卡片310246 (1)他想从中取出3张卡片使3张卡片上的数字乘机最大,应如何抽取?积最大是多少呢? (2)积最小该如何抽取?设计意图:有理数相乘符号的确定是本节课的一个难点。本题中有7张卡片,选3个数相乘的情况有多种,如果列举所有的可能情况计算,运算量是相当的大. 如何在最短的时间里求出积的最大和最小值,那就要对本节课所学的知识进行回顾与思考. 根据确定多个有理数相乘的积的符号法则,再进行分类,易得到正确的答案.这样使学生的思维得到了开拓升华.七、作业 阅读书P44 46 和书P53 1和2学习评价手册:有理数乘法(1)教学反思:(1)数学的学习实际上就是为了解决问题,许多生活中的事例需
13、要运用到数学的知识,站在数学的角度去看问题.所以在本节课的教学设计中,我力求做到以问题作为主线,层层推进.首先,创设了水位的问题情境,让学生的、感受到数学源于生活,提高学习的兴趣,使实际问题生活化.同时建立模型,以问题串的形式,适时提出问题,使抽象的概念法则形象化,并帮助学生分类,归纳出有理数的乘法法则;其次,在练习和反馈中问题,由易到难,让学生体会到成功的喜悦.(2)本节课“创设问题情境建立模型探索、归纳、应用与发展”的教学模式展开,以学生为课堂的主人,让学生积极主动地参与到学习中去,通交流、探索,研究,培养学生的解决问题、归纳总结和合作的能力.教师做到学习的组织者、引导者与合作者.(3)关注学生是否积极参与课堂活动,能否从数学的角度去思考问题.但是有遗憾和不足的地方:学生没有提出问题.在以后的教学中教师应留给学生更多的展示自己的机会,给予他们鼓励和欣赏,建立他们学习数学的信心. 7