《公式法解一元二次方程说课课件ppt.ppt》由会员分享,可在线阅读,更多相关《公式法解一元二次方程说课课件ppt.ppt(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 22.2 公式法解元二次方程公式法解元二次方程教材分析教材分析教法分析教法分析学法分析学法分析教学过程教学过程教学评价教学评价公公式式法法解解一一元元二二次次方方程程 (1)在上节课学习了利用配方法解一元二次方程,为)在上节课学习了利用配方法解一元二次方程,为本节课求根公式的推导打下了基础,有利于难点的突破。本节课求根公式的推导打下了基础,有利于难点的突破。 (2)另外学生在八上)另外学生在八上实数实数一章中,学习了被一章中,学习了被开方数的非负性,并掌握了开平方运算,为这节课理开方数的非负性,并掌握了开平方运算,为这节课理解求根公式的应用条件奠定了基础。解求根公式的应用条件奠定了基础。 教
2、材分析教材分析 地位与作用地位与作用(一)知识目标(一)知识目标 (1)理解求根公式的推导过程和判别公式;)理解求根公式的推导过程和判别公式; (2)使学生能熟练地运用公式法求解一元二次方程)使学生能熟练地运用公式法求解一元二次方程. (二)能力目标(二)能力目标1.通过由配方法推导求根公式通过由配方法推导求根公式,培养学生推理能力培养学生推理能力和和由特殊到一般的数学由特殊到一般的数学思想思想 (三)情感目标(三)情感目标 2结合的使用求根公式解一元二次方程的练习,培养学生结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能运用公式解决问题的能力。力。 让学生体验到所有一元二
3、次方程都能运用公式法去解,形成全面解决问题的积极情让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感感,感受公式的对称美、简洁美,产生热爱数学的情感 教材分析教材分析 目标分析目标分析重点:重点: (1)掌握公式法解一元二次方程的一般步骤掌握公式法解一元二次方程的一般步骤. (2)熟练地用求根公式解一元二次方程。熟练地用求根公式解一元二次方程。难点:难点: 理解理解求根公式的推导过程及判别公式求根公式的推导过程及判别公式教材分析教材分析 重点与难点重点与难点 本节课采用引导发现式和自主探究式与交流本节课采用引导发现式和自主探
4、究式与交流讨论相结合的教学方式讨论相结合的教学方式 。 在教学中由旧知识引导探究一般化问题的形式展开,在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识,让学生多交流,主动参与到教利用学生已有的知识,让学生多交流,主动参与到教学活动中来。学活动中来。教法分析教法分析通过本次课的教学,让学生学会善于观察、分析讨论、通过本次课的教学,让学生学会善于观察、分析讨论、和类比归纳的方法。和类比归纳的方法。 提出问题后,鼓励学生通过分析、探索,尝试解决提出问题后,鼓励学生通过分析、探索,尝试解决问问 题的方法,通过自己亲自尝试,使学生的思维能题的方法,通过自己亲自尝试,使学生的思维能力得到培
5、养。力得到培养。学法分析学法分析教学过程教学过程复习导入复习导入呈现问题呈现问题例题讲解例题讲解总结步骤总结步骤巩固练习巩固练习课时小结课时小结一、用配方法解一元二次方程一、用配方法解一元二次方程 二、二、用配方解一元二次方程的步骤是什么?用配方解一元二次方程的步骤是什么?设计意图:设计意图:问题(问题(1) 利用昨天所学利用昨天所学“配方法配方法”解一元二次方程,达到解一元二次方程,达到“温故而知新温故而知新”的目的的目的问题(问题(2)总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备)总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备09822 xx教学过程教学过程
6、复习导入复习导入你能用配方法解一般形式的一元二次方程你能用配方法解一般形式的一元二次方程 axax2 2+bx+c=0(a0)+bx+c=0(a0)吗吗? ?教学过程教学过程 呈现问题呈现问题设计意图:学会由特殊到一般化得思想。设计意图:学会由特殊到一般化得思想。化简、移项、配方、变形由我和学生一起探究完成,到化简、移项、配方、变形由我和学生一起探究完成,到 这步时,提出问题这步时,提出问题: acb42设计意图:师生共同完成前四步,这样与利于减轻学生的思维负担,便设计意图:师生共同完成前四步,这样与利于减轻学生的思维负担,便于将主要精力放在后边公式的推导上。通过小组的讨论有利于发挥学生于将主
7、要精力放在后边公式的推导上。通过小组的讨论有利于发挥学生的互帮互助;有利于突破难点。的互帮互助;有利于突破难点。24422)2(aacbabx探索与归纳探索与归纳此时可以直接开平方吗?需要注意什么?此时可以直接开平方吗?需要注意什么?等号右边的值有可能为负吗?说明什么?等号右边的值有可能为负吗?说明什么?让小组交流、讨论达成共识。学生会对让小组交流、讨论达成共识。学生会对 进行讨论,分类思想也进行讨论,分类思想也是今后常用的一种思想,应加以强化。是今后常用的一种思想,应加以强化。最终总结出:当最终总结出:当 时,原方程无实数解。时,原方程无实数解。042 acb042 acbaacbbx242
8、探索与归纳探索与归纳当当 时,原方程有实数解,解是多少可以将时,原方程有实数解,解是多少可以将a、b、c的值带入公式的值带入公式 而得到,这个公式就称为而得到,这个公式就称为“求根公求根公式式”。利用它解一元二次方程叫做利用它解一元二次方程叫做公式法。公式法。公式法是这样生产的. 0:2acxabx解.22222acababxabx.442222aacbabx.04.2422acbaacbbx.2acxabx,042时当 acbw1.化1:把二次项系数化为1;w3.配方:方程两边都加上一次项系数绝对值一半的平方;w4.变形:方程左分解因式,右边合并同类;w5.开方:根据平方根意义,方程两边开平
9、方;w6.求解:解一元一次方程;w2.移项:把常数项移到方程的右边;w7.定解:写出原方程的解.探索与归纳探索与归纳例例 用公式法解下列方程用公式法解下列方程 (1) (2) (3) 设计意图设计意图:规范解题格式;体验用公式法解一元二次方程规范解题格式;体验用公式法解一元二次方程的步骤。的步骤。0122 xx02122xx02342 Xx教学过程教学过程 例题讲解例题讲解 1 1、把方程化成一般形式、把方程化成一般形式, ,并写出并写出a a,b b,c c的值。的值。2 2、求出、求出b b2 2-4ac-4ac的值。的值。3 3、代入求根公式、代入求根公式 : : (a0, (a0, b
10、 b2 2-4ac0-4ac0) )4 4、写出方程的解:、写出方程的解: x x1 1=?, x=?, x2 2=?=?aacbbx242设计意图:这一环节的设计是为了规范解题格式设计意图:这一环节的设计是为了规范解题格式,让学生体会数学课中的让学生体会数学课中的严谨的逻辑推理;从而更好地体会到用公式法解一元二次方程的步骤严谨的逻辑推理;从而更好地体会到用公式法解一元二次方程的步骤 。教学过程教学过程 总结步骤总结步骤 解下列一元二次方程:解下列一元二次方程: 062xx(1)(2)(3)094xx010522x设计意图设计意图(1) 熟悉公式法,强化解题格式,熟悉公式法,强化解题格式, (
11、2) 及及时发现错误及时解决。时发现错误及时解决。教学过程教学过程 巩固练习巩固练习本节课你学会了哪些知识? (1) 学生作知识总结:本节课通过配方法求解一般形式的一元二次学生作知识总结:本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步骤解一元方程的根,推出了一元二次方程的求根公式,并按照公式法的步骤解一元二次方程二次方程 (2)我扩展:(方法归纳)求根公式是一元二次方程的专用公式,)我扩展:(方法归纳)求根公式是一元二次方程的专用公式, 只有在确定方程是一元二次方程时才能使用,是常用而重要的一元二次方只有在确定方程是一元二次方程时才能使用,是常用而重要的一元二次方程的万能求根公式程的万能求根公式 教学过程教学过程 课时小结课时小结 本节课内容较为单一,通过本节课内容较为单一,通过“层层设疑层层设疑”、“复复习回顾习回顾”等环节促进学生的思考和探究。等环节促进学生的思考和探究。 通过比较合理的问题设计巩固练习、小组讨论等通过比较合理的问题设计巩固练习、小组讨论等形式给学生提供了充分的展示机会,强化了学生的运算形式给学生提供了充分的展示机会,强化了学生的运算能力,有利于学生掌握基本技能。能力,有利于学生掌握基本技能。 教学评价教学评价