《难点解析京改版八年级数学下册第十六章一元二次方程专题练习试题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点解析京改版八年级数学下册第十六章一元二次方程专题练习试题(无超纲).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十六章一元二次方程专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用配方法解一元二次方程x210x+210,下列变形正确的是()A(x5)24B(x+5)24C(x5)212
2、1D(x+5)21212、已知是一元二次方程的一个根,则代数式的值为( )A2020B2021C2022D20233、已知关于x的一元二次方程:x22xm0有两个不相等的实数根x1,x2,则( )Ax1x20Bx1x20Cx1x21Dx1x214、已知关于x的一元二次方程x2(2m+3)x+m20有两根,若1,则m的值为()A3B1C3或1D5、对于一元二次方程ax2bxc0(a0),有下列说法:当a0,且bac时,方程一定有实数根;若ac0,则方程有两个不相等的实数根;若abc0,则方程一定有一个根为1;若方程有两个不相等的实数根,则方程bx2axc0一定有两个不相等的实数根其中正确的有()
3、ABCD6、一元二次方程x2+2x1的根的情况是()A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法确定7、若a是方程的一个根,则的值为( )A2020BC2022D8、若是关于的方程的一个根,则的值是( )ABC1D29、一个三角形两边的长分别等于一元二次方程的两个实数根,则这个三角形的第三条边不可能为( )A7B11C15D1910、方程x2x0的解是()Ax0Bx1Cx10,x21Dx10,x21第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若m是方程的一个根,则的值为_2、关于x的一元二次方程kx23x10有实数根,则k的取值范围是_3、小华在解方
4、程x2 = 3x时,只得出一个根x = 3,则被他漏掉的一个根是x =_ 4、一元二次方程3x232x的根的判别式的值为 _5、已知:m、n是方程x2+2x10的两根,则(m2+3m+3)(n2+3n+3)_三、解答题(5小题,每小题10分,共计50分)1、解方程:(1) x(x -2)+ x -2 = 0 (2) x2 - 4x + 1 = 0 (用配方法)2、(1)计算:(2)解方程:3、随着元旦的到来,某超市准备在元旦期间推出甲、乙两种商品,甲型的售价是乙型的(1)元旦第一周该商家两种商品的总销售额为3600元,乙商品的销售额是甲商品的2倍,销售量比甲商品多40件,求甲商品销售了多少件?
5、(2)为增加销量,该商家第二周决定将乙商品的售价下调,甲商品的售价保持不变,结果与第一周相比,乙商品的销量增加了,甲商品的销量增加了a,最终第二周的销售额比第一周的销售额增加了,求a的值4、解方程:(1)x28x20; (2)2(2x3)2(2x3)105、解方程:(1)x22x30; (2)x (x2)x20-参考答案-一、单选题1、A【分析】利用配方法,方程的两边同时加上一次项系数一半的平方,即可求解【详解】解:x210x+210,移项得: ,方程两边同时加上25,得: ,即 故选:A【点睛】本题主要考查了利用配方法解一元二次方程,熟练掌握利用配方法,需要方程的两边同时加上一次项系数一半的
6、平方是解题的关键2、B【分析】把代入一元二次方程得到,再利用整体代入法解题即可【详解】解:把代入一元二次方程得,故选:B【点睛】本题考查一元二次方程的解、已知式子的值求代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键3、D【分析】利用根与系数关系,得到两根之和,即可判断A选项,利用根的判别式,求出的取值范围,利用两根之积,得到,最后即可判断出正确答案【详解】解:由题意可知:两根之和:,故A错误,x22xm0有两个不相等的实数根,解得:, 由根与系数的关系可知:,只有D选项正确,故选:D【点睛】本题主要是考查了根与系数的关系以及根的判别式,熟练利用根与系数的关系,求出两根
7、之和与两根之积,以及利用根的判别式,求出参数范围,是解决本题的关键4、A【分析】先利用根的判别式得到m,再根据根与系数的关系得+2m+3,m2,则2m+3m2,然后解关于m的方程,最后利用m的范围确定m的值【详解】解:根据题意得(2m+3)24m20,解得m,根据根与系数的关系得+2m+3,m2,1,+,即2m+3m2,整理得m22m30,解得m13,m21,m,m的值为3故选:A【点睛】本题考查的是一元二次方程根的判别式,根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=0(a0)的两根时,是解答此题的关键5、C【分析】令,由判别式即可判断;若,则a、c异号,由判别式即可判断;令
8、得,即可判断;取,来进行判断即可【详解】由当,方程此时没有实数根,故错误;若,a、c异号,则,方程一定有两个不相等的实数根,所以正确;令得,则方程一定有一个根为;正确;当,时,有两个不相等的根为,但方程只有一个根为1,故错误故选:C【点睛】本题考查一元二次方程的解以及判别式,掌握用判别式判断根的情况是解题的关键6、A【分析】方程整理后得出x2+2x10,求出80,再根据根的判别式的内容得出答案即可【详解】解:x2+2x1,整理得,x2+2x10,2241(1)80,方程有两个不相等的实数根,故选:A【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键7、C【分析】先根据一元二次方
9、程根的定义得到,再把变形为,然后利用整体代入的方法计算【详解】解:是关于的方程的一个根,故选:C【点睛】本题考查了一元二次方程的解,解题的关键是能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,利用整体代入的方法计算可简化计算8、A【分析】将n代入方程,然后提公因式化简即可【详解】解:是关于x的方程的根,即,即,故选:A【点睛】本题考查了一元二次方程的解,理解题意,熟练运用提公因式是解题关键9、D【分析】先根据一元二次方程的解法得到这个三角形的两边长,然后再利用三角形三边关系可排除选项【详解】解:,解得:,这个三角形的两边的长为6和11,第三边长x的范围为5x17;故选D【点睛】本题
10、主要考查一元二次方程的解法及三角形三边关系,熟练掌握一元二次方程的解法及三角形三边关系是解题的关键10、D【分析】因式分解后求解即可.【详解】x2x0,x(x-1)=0,x=0,或x-1=0,解得x10,x21,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:移项,使方程的右边化为零;将方程的左边分解为两个一次因式的乘积;令每个因式分别为零,得到两个一元一次方程;解这两个一元一次方程,它们的解就都是原方程的解二、填空题1、-16【分析】把x=m代入,可得,然后代入计算即可;【详解】解:把x=m代入,得,=-3-13=-16故答案为:-16【点睛】本题考查了
11、一元二次方程的解,以及整体代入法求代数式的值,求出是解答本题的关键2、且【详解】利用判别式,根据一元二次方程的定义,列出不等式即可解决问题;【分析】解:关于x的一元二次方程kx23x10有实数根,0且k0,94k0,k,且k0,故答案为k且k0【点睛】本题考查根的判别式,一元二次方程ax2bxc0(a0)的根与b24ac有如下关系:当0时,方程有两个不相等的两个实数根;当0时,方程有两个相等的两个实数根;当0时,方程无实数根上面的结论反过来也成立3、0【分析】根据因式分解法即可求出答案【详解】解:x2=3x,x2-3x=0,x=0或x-3=0,x1=0,x2=3,故答案为:0【点睛】本题考查解
12、一元二次方程,解题的关键是熟练运用因式分解法4、40【分析】先把一元二次方程化为一般式,然后利用一元二次方程根的判别式直接计算即可解答【详解】解:,故答案为:40【点睛】本题考查一元二次方程根的判别式,熟练掌握该知识点是解题关键5、7【分析】根据题意得到m+n=-2,mn=-1,m2+2m=1,n2+2n=1,再将(m2+3m+3)(n2+3n+3)变形为(m2+2m+m+3)(n2+2n+n+3),进而得到(m+4)(n+4),进而得到mn+4(m+n)+16,问题得解【详解】解:m、n是方程x2+2x10的两根,m2+2m10 ,n2+2n10,m+n=-2,mn=-1,m2+2m=1,n
13、2+2n=1,(m2+3m+3)(n2+3n+3)=(m2+2m+m+3)(n2+2n+n+3)=(1+m+3)(1+n+3)=(m+4)(n+4)=mn+4m+4n+16=mn+4(m+n)+16=-1+4(-2)+16=7故答案为:7【点睛】本题考查了一元二次方程根的定义,根与系数的关系,熟知一元二次方程根的定义,根与系数的关系,并根据题意将所求代数式变形是解题关键三、解答题1、(1),;(2),【分析】(1)根据因式分解法解方程即可得;(2)利用配方法将等号左边变为完全平方公式,然后开方求解即可【详解】解:(1),或,解得:,;(2),或,解得:,【点睛】题目主要考查解一元二次方程的因式
14、分解法和配方法,熟练运用两种方法是解题关键2、(1)2;(2)或.【分析】(1)由题意先利用二次根式的乘除运算法则计算,进而计算算术平方根,最后计算加减法即可;(2)根据题意利用配方法进行计算即可解出方程.【详解】解:(1)原式(2)则或,解得:或.【点睛】本题考查二次根式的乘除运算和解一元二次方程,熟练掌握二次根式的乘除运算法则和利用配方法求解方程是解题的关键.3、(1)80件;(2)40【分析】(1)先求得第一周甲乙商品的销售额,设甲商品销售了x件,则乙商品销售了件,根据题意列方程求解即可;(2)先求得第一周甲乙商品的销售单价,根据题意列方程求解即可【详解】解:(1)第一周甲商品的销售额为
15、(元),第一周乙商品的销售额为(元)设甲商品销售了x件,则乙商品销售了件,依题意,得:,解得:,经检验,是原方程的解,且符合题意答:甲商品销售了80件(2)第一周甲商品的销售单价为(元),第一周乙商品的销售单价为(元)依题意,得:整理,得:,解得:,(不合题意,舍去)答:a的值为40【点睛】本题考查分式方程及一元二次方程的应用,解题关键是找准等量关系,正确列出方程4、(1)x143,x243;(2)x11,x2【分析】(1)通过移项配方,求出方程的解即可;(2)分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:(1)x28x20,移项得:x28x2,配方得:x28x+162+1
16、6,即 (x+4)218,x143,x243;(2)2(2x3)2(2x3)10因式分解得:(2x3)-12(2x3)+1=0,即:(2x+2)(4x+7)=0,x11,x2【点睛】本题考查了解一元二次方程,掌握因式分解法以及配方法解方程是解题的关键5、(1)x13,x21;(2)x12, x21【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可【详解】(1)解:x22x30x22x131(x1)24x12x13,x21;(2)解:x (x2)(x2)0(x2)(x1)0x-2=0或x-1=0x12, x21【点睛】本题考查解一元二次方程,掌握一元二次方程的求解方法,并根据题意灵活选择适当的解题方法是解题关键