精品试卷北师大版九年级数学下册第一章直角三角形的边角关系章节训练试题.docx

上传人:可****阿 文档编号:30774858 上传时间:2022-08-06 格式:DOCX 页数:25 大小:587.25KB
返回 下载 相关 举报
精品试卷北师大版九年级数学下册第一章直角三角形的边角关系章节训练试题.docx_第1页
第1页 / 共25页
精品试卷北师大版九年级数学下册第一章直角三角形的边角关系章节训练试题.docx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《精品试卷北师大版九年级数学下册第一章直角三角形的边角关系章节训练试题.docx》由会员分享,可在线阅读,更多相关《精品试卷北师大版九年级数学下册第一章直角三角形的边角关系章节训练试题.docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第一章直角三角形的边角关系章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是( )

2、ABCD2、在中,则的值是( )ABCD3、如图,建筑工地划出了三角形安全区,一人从点出发,沿北偏东53方向走50m到达C点,另一人从B点出发沿北偏西53方向走100m到达C点,则点A与点B相距( )ABCD130m4、如图,在中,点P为AC上一点,且,则的值为( )A3B2CD5、的相反数是( )ABCD6、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )A米B米C米D米7、比较下图长方形内阴影部分面积的大小,甲( )乙ABCD无法确定8、如图所示,某村准备在坡角为的山坡上栽树,要求相邻两棵树之间的水平距离为(m),那么这两棵树在坡面上

3、的距离AB为( )Amcos(m)B(m)Cmsin(m)D(m)9、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,则的值是( )A-20B20C5D510、的倒数是( )ABC2D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在正方形中,对角线,相交于点O,点E在边上,且,连接交于点G,过点D作,连接并延长,交于点P,过点O作分别交、于点N、H,交的延长线于点Q,现给出下列结论:;其中正确的结论有_(填入正确的序号)2、计算:_3、如图,在A处测得点P在北偏东60方向上,在B处测得点P在北偏东30方向上,若A

4、P6千米,则A,B两点的距离为 _千米4、构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15时,如图,在RtABC中,C90,ABC30,延长CB至D,使BDAB,连接AD,得D15,所以tan152类比这种方法,计算tan22.5的值为 _5、在ABC中,那么的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,上午9时,一条船从A处出发,以每小时40海里的速度向正东方向航行,9时30分到达B处,从A、B两处分别测得小岛C在北偏东和北偏东方向上,已知小岛C周围方圆30海里的海域内有暗礁该船若继续向东方向航行,有触礁的危险吗?并说明理由2、计算:(1);(2)3、在

5、ABC中,ABAC,BAC,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为,得到线段PD,连接DB,DC(1)如图1,当60时,猜想PA和DC的数量关系并说明理由;(2)如图2,当120时,猜想PA和DC的数量关系并说明理由4、在中,为锐角且(1)求的度数;(2)求的正切值5、计算:-参考答案-一、单选题1、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:B【点睛】本题考查锐角三角函数,掌握在直角三角形中,是解题的关键2、B【分析】根据题意,画出图形,

6、结合余弦函数的定义即可求解【详解】解:由题意,可得图形如下:根据余弦函数的定义可得,故选:B【点睛】此题考查了余弦函数的定义,解题的关键是根据题意画出图形,并掌握余弦函数的定义3、B【分析】设经过A点的东西方向线与经过B点的南北方向线相交于点D,过C作CFAD,CEAD,BEAG,则GACACFEBCBCF53,在RtACF和RtBCE中,根据正切三角函数的定义得到,结合勾股定理可求得AF40,CFDE30,FDCE80,BE60,在RtABD中,根据勾股定理即可求得AB【详解】解:如图,设经过A点的东西方向线与经过B点的南北方向线相交于点D,过C作CFAD,CEAD,BEAG,CEB90,G

7、ACACFEBCBCF53,AC50,BC100,四边形CEDF是矩形,DECF,DFCE,在RtACF中,tanACFtan53,在RtBCE中,tanEBCtan53,tan53,AFCF,CEBE,在RtACF中,AF2+CF2AC2,CF2+(CF)2502,解得CFDE30,AF3040,在RtBCE中,BE2+CE2BC2,BE2+(BE)21002,解得BE60,CEDF6080,ADAF+DF120,BDBEDE30,在RtABD中,AD2+BD2AB2,AB30故选:B【点睛】本题考查的是解直角三角形的应用方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键4、A【

8、分析】过点P作PDAB交BC于点D,因为,且,则tanPBD=tan45=1,得出PB=PD,再有,进而得出tanAPB的值【详解】解:如图,过点作交于点,,,且,PBD=45,又,故选A【点睛】本题主要考查了相似三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助线进行求解5、C【分析】先计算=,再求的相反数即可【详解】=,的相反数是,故选C【点睛】本题考查了特殊角的三角函数值,相反数的定义,熟记特殊角的三角函数值是解题的关键6、C【分析】利用在RtABO中,tanBAO即可解决【详解】:解:如图,在RtABO中,AOB90,A65,AO30m,tan65,BO30tan65米故

9、选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边7、C【分析】如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据两个大三角形的面积相等,即甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,即可求得甲的面积等于乙的面积【详解】解:如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据长方形的对边相等,则长方形对角线分成的两个三角形面积等相等,所以甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三

10、角形4的面积,则甲的面积等于乙的面积故选:C【点睛】此题考查了三角形的面积,等底等高的两个三角形的面积相等是解答此题的关键8、B【分析】直接利用锐角三角函数关系得出,进而得出答案【详解】由题意可得:,则AB=故选:B【点睛】此题主要考查了解直角三角形的应用,正确记忆锐角三角函数关系是解题关键9、D【分析】先根据直线解析式求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,利用待定系数法将点B坐标代入即可求得结论【详解】解:直线y=k1x+4与x轴交于点A,与y轴交于点C,点C的坐标为(0,4),OC=4,过B作BDy轴于D,SOBC=2,B

11、D=1,tanBOC=,OD=5,点B的坐标为(1,5),反比例函数在第一象限内的图象交于点B,k2=15=5故选:D【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形10、C【分析】根据cos60进行结合倒数回答即可【详解】解:由特殊角的三角函数值可知,cos60,的倒数是,故:的倒数是2故选C【点睛】本题主要考查了特殊角的三角函数值和倒数,熟练掌握特殊角的三角函数值是解答此类问题的关键.二、填空题1、【分析】由“ASA”可证ANODFO,可得ON=OF,由等腰三角形的性质可求AFO=45;由外角的性质

12、可求NAO=AQO由“AAS”可证OKGDFG,可得GO=DG;通过证明AHNOHA,可得,进而可得结论DP2=NHOH【详解】四边形ABCD是正方形,AO=DO=CO=BO,ACBD,AOD=NOF=90,AON=DOF,OAD+ADO=90=OAF+DAF+ADO,DFAE,DAF+ADF=90=DAF+ADO+ODF,OAF=ODF,ANODFO (ASA),ON=OF,AFO=45,故正确;如图,过点O作OKAE于K,CE=2DE,AD=3DE,tanDAE=,AF=3DF,ANODFO,AN=DF,NF=2DF,ON=OF,NOF=90,OK=KN=KF=FN,DF=OK,又OGK=

13、DGF,OKG=DFG=90,OKGDFG (AAS),GO=DG,故正确;DAO=ODC=45,OA=OD,AOH=DOP,AOHODOP (ASA),AH=DP,ANH=FNO=45=HAO,AHN=AHO,AHNOHA,AH2=HOHN,DP2=NHOH,故正确;NAO+AON=ANQ=45,AQO+AON=BAO=45,NAO=AQO,即故错误综上,正确的是故答案为:【点睛】本题是四边形综合题,查了正方形的性质,全等三角形的判定和性质,锐角三角函数,等腰三角形的性质,相似三角形的判定和性质,灵活运用这些性质解决问题是解题的关键2、【分析】根据特殊的三角函数值解答即可【详解】解:,故答案

14、为:【点睛】本题考查了特殊的三角函数值,熟记特殊的三角函数值是解题是关键3、6【分析】证明ABPB,在RtPAC中,求出PC3千米,在RtPBC中,解直角三角形可求出PB的长,则可得出答案【详解】解:由题意知,PAB30,PBC60,APBPBCPAB603030,PABAPB,ABPB,在RtPAC中,AP6千米,PCPA3千米,在RtPBC中,sinPBC,PB6千米AB6千米故答案为:6【点睛】本题考查了解直角三角形应用题,方向角:指正北或指正南方向线与目标方向线所成的小于90的角叫做方向角注意在描述方向角时,一般应先说北或南,再说偏西或偏东多少度,而不说成东偏北(南)多少度或西偏北(南

15、)多少度.当方向角在45方向上时,又常常说成东南、东北、西南、西北方向4、#【分析】在等腰直角ABC中,C=90,延长CB至点D,使得AB=BD,则BAD=D设AC=1,求出CD,可得结论【详解】解:如图,在等腰直角ABC中,C=90,延长CB至点D,使得AB=BD,则BAD=DABC=45,45=BAD+D=2D,D=22.5,设AC=1,则BC=1,故答案为:【点睛】本题考查解直角三角形,分母有理化,特殊直角三角形的性质,三角函数等知识,解题的关键是学会利用特殊直角三角形解决问题5、6【分析】根据解三角形可直接进行求解【详解】解:在ABC中,;故答案为6【点睛】本题主要考查解直角三角形,熟

16、练掌握三角函数是解题的关键三、解答题1、有触礁的危险,见解析【分析】从点C向直线AB作垂线,垂足为E,设CE的长为x海里,根据锐角三角函数的概念求出x的值,比较即可【详解】解:有触礁的危险理由:从点C向直线AB作垂线,垂足为E, 根据题意可得:AB=20海里,CAE=30,CBE=45,设CE的长为x海里,在RtCBE中:CBE=45,BE=CE=x海里,AE=AB+BE=(20+x)海里,在RtCAE中:CAE=30,tan30=,解得:x=10+10,10+1030,该船若继续向正东方向航行,有触礁的危险【点睛】本题考查的是解直角三角形的应用方向角问题,正确根据题意画出图形、准确标注方向角

17、、熟练掌握锐角三角函数的概念是解题的关键2、(1);(2)1【分析】(1)用公式法求解即可;(2)根据特殊角的三角函数值、零指数幂和负整数指数幂、二次根式的性质计算即可【详解】(1),(2)原式【点睛】本题考查了解一元二次方程,特殊角的三角函数值、零指数幂和负整数指数幂、二次根式的性质等知识,熟练掌握并灵活运用这些知识是关键3、(1),理由见解析;(2),理由见解析【分析】(1)根据已知条件证明即得到;(2)过点作于,过点作,进而可得,同理可得证明进而证明,根据相似三角形的性质列出比例式即可求得【详解】(1),理由如下,是等边三角形,线段绕点P逆时针旋转后得到线段,是等边三角形,;(2)理由如

18、下,如图,过点作于,过点作,即,【点睛】本题考查了全等三角形的性质与判定,特殊角的三角函数值,等腰三角形的性质,相似三角形的性质与判定,旋转的性质,综合运用以上知识是解题的关键4、(1)60,(2)3【分析】(1)根据特殊角三角函数值直接求解即可;(2)作ADBC于D,求出AD3,CD1,由三角函数定义即可得出答案【详解】解:(1)B为锐角且,B60;(2)作ADBC于D,如图所示:,BDAB3,AD,BC4,BD3,CDBCBD1,tanC3【点睛】本题考查了解直角三角形、特殊锐角的三角函数值、三角函数定义等知识;熟练掌握直角三角形的性质和特殊锐角的三角函数值是解题的关键5、2【分析】将特殊角的三角函数值代入,然后利用二次根式的运算法则计算即可得【详解】解:,【点睛】题目主要考查特殊角的三角函数值的计算,二次根式的混合运算,0次幂的运算,熟记特殊角的三角函数值是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁