精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专题训练试卷.docx

上传人:可****阿 文档编号:30773653 上传时间:2022-08-06 格式:DOCX 页数:22 大小:608.46KB
返回 下载 相关 举报
精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专题训练试卷.docx_第1页
第1页 / 共22页
精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专题训练试卷.docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专题训练试卷.docx》由会员分享,可在线阅读,更多相关《精品试卷北师大版九年级数学下册第一章直角三角形的边角关系专题训练试卷.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第一章直角三角形的边角关系专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点为边上的任意一点,作于点,于点,下列用线段比表示的值,正确的是( )ABCD2、为出行方便,近日来越

2、来越多的长春市民使用起了共享单车,图1为单车实物图,图2为单车示意图,AB与地面平行,点A、B、D共线,点D、F、G共线,坐垫C可沿射线BE方向调节已知,ABE=70,车轮半径为30 cm,当BC=60 cm时,小明体验后觉得骑着比较舒适,此时坐垫C离地面高度约为( )(结果精确到1cm,参考数据:sin700.94,cos700.34,tan701.41) A90cmB86cmC82cmD80cm3、已知RtABC中,则的值为( )ABCD4、如图,飞机于空中A处测得目标B处的俯角为,此时飞机的高度AC为a,则A,B的距离为( )AatanBCDcos5、已知,在矩形中,于,设,且,则的长为

3、( )ABCD6、的相反数是( )ABCD7、如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接若,则的值是( )ABCD8、如图,在四边形ABCD中,O为对角线BD的中点,则等于( )ABCD9、如图所示,九(二)班的同学准备在坡角为的河堤上栽树,要求相邻两棵树之间的水平距离为8 m,那么这两棵树在坡面上的距离AB为( )A8mB mC8sina mD m10、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m如果在坡度为1:2的山坡上种树,也要求株距为4m,那么相邻两树间的垂面距离为()A4mB8mC2mD1m第卷(非选择题 7

4、0分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,tanB,AB,AC,则线段BC的长为_2、若一个小球由桌面沿着斜坡向上前进了10cm,此时小球距离桌面的高度为5cm,则这个斜坡的坡度为_3、如图,矩形ABCD中,AB4,AEAD,将ABE沿BE折叠后得到GBE,延长BG交CD于F点,若F为CD中点,则BC的长为 _4、在ABC中,(2cosA)2+|1tanB|0,则ABC一定是:_5、在矩形ABCD中,BC3AB,点P在直线BC上,且PCAB,则APB的正切值为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在中,(1)在线段上求作一点D,使得;(用尺规作图,

5、不写作法,但应保留作图痕迹)(2)若,利用上述作图,求的值2、在中,为锐角且(1)求的度数;(2)求的正切值3、计算:(1)(2)4、计算:5、(1)计算:2cos30(1)2021;(2)解方程组:-参考答案-一、单选题1、C【分析】根据正弦值等于对边与斜边的比,可得结论【详解】解:在中,;在中,故选:【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键2、B【分析】过点C作CNAB,交AB于M,交地面于N,构造直角三角形,利用三角函数,求出CM,再用CM减去MN即可【详解】解:过点C作CNAB,交AB于M,交地面于N由题意可知MN=30cm, 在RtBCM中,ABE=

6、70,sinABE=sin70=0.94CM56cmCN=CM+MN=30+56=86(cm)故选:B【点睛】本题考查了解直角三角形的应用,构造直角三角形,将所给角放到直角三角形中,是解题的关键3、A【分析】根据勾股定理,可得AB的长,根据余弦等于邻边比斜边,可得答案【详解】解:在RtABC中,C90,AC2,BC1,由勾股定理,得AB,cosB,故选:A【点睛】本题考查了锐角三角函数,利用勾股定理求出斜边,再利用余弦等于邻边比斜边4、C【分析】根据题意可知,根据,即可求得【详解】解:飞机于空中A处测得目标B处的俯角为,AC为a,故选C【点睛】本题考查了正弦的应用,俯角的意义,掌握正弦的概念是

7、解题的关键5、B【分析】根据同角的余角相等求出ADE=ACD,再根据两直线平行,内错角相等可得BAC=ACD,然后求出AC,再利用勾股定理求出BC,然后根据矩形的对边相等可得AD=BC【详解】解:DEAC,ADE+CAD=90,ACD+CAD=90,ACD=ADE=,矩形ABCD的对边ABCD,BAC=ACD,cos=,AC=4=,由勾股定理得,BC=,四边形ABCD是矩形,AD=BC=故选:B【点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键6、C【分析】先计算=,再求的相反数即可【详解】=,的相反数是,故选C【点睛】本题考查了

8、特殊角的三角函数值,相反数的定义,熟记特殊角的三角函数值是解题的关键7、B【分析】首先根据直线求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论【详解】解:直线yk1x+2与x轴交于点A,与y轴交于点C,点C的坐标为(0,2),OC2,SOBC1,BD1,tanBOC,OD3,点B的坐标为(1,3),反比例函数y在第一象限内的图象交于点B,k2133故答案为:B【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点B的坐标8、A【分析】先根据平行线的性质和直角三角形斜边上的中线等于斜边的一半求出BD,再

9、根据勾股定理的逆定理判断出BDC=90,由正切定义求解即可【详解】解:ADBC,ABC=90,BAD=90,O为对角线BD的中点,OA=2,BD=2OA=4,BC=5,CD=3,BD2+CD2=BC2,BDC=90,tanDCB= =,故选:A【点睛】本题考查平行线的性质、直角三角形的斜边中线性质、勾股定理的逆定理、正切,熟练掌握勾股定理的逆定理是解答的关键9、B【分析】运用余弦函数求两树在坡面上的距离AB【详解】解:坡角为,相邻两树之间的水平距离为8米,两树在坡面上的距离(米)故选:B【点睛】此题主要考查解直角三角形中的坡度坡角问题及学生对坡度坡角的掌握及三角函数的运用能力10、C【分析】根

10、据坡度的概念求出AC,得到答案【详解】解:如图,AB的坡度为1:2,即,解得,AC=2,故选:C【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键二、填空题1、或【分析】此题分两种情况:如图1,过作于,在中,由已知条件,设设,根据勾股定理求出的值,从而得出,在中,根据勾股定理得出,于是得到结果;如图2,过作交的延长线于,同理可得结果【详解】解:如图1,过作于,在中,设,在中,;如图2,过作交的延长线于,在中,设,在中,;故答案为:或【点睛】本题考查锐角三角函数的定义及运用,解题的关键是掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻

11、边比斜边,正切为对边比邻边2、【分析】过B作BC桌面于C,由题意得AB=10cm,BC=5cm,再由勾股定理求出AC的长度,然后由坡度的定义即可得出答案【详解】如图,过B作BC桌面于C,由题意得:AB=10cm,BC=5cm,这个斜坡的坡度,故答案为:【点睛】本题考查了解直角三角形的应用-坡度坡角问题以及勾股定理;熟练掌握坡度的定义和勾股定理是解题的关键3、4【分析】延长BF交AD的延长线于点H,证明BCFHDF(AAS),由全等三角形的性质得出BC=DH,由折叠的性质得出A=BGE=90,AE=EG,设AE=EG=x,则AD=BC=DH=3x,得出EH=5x,由锐角三角函数的定义及勾股定理可

12、得出答案【详解】解:延长BF交AD的延长线于点H,四边形ABCD是矩形,AD=BC,ADBC,A=BCF=90,H=CBF,在BCF和HDF中,BCFHDF(AAS),BC=DH,将ABE沿BE折叠后得到GBE,A=BGE=90,AE=EG,EGH=90,AE=AD,设AE=EG=x,则AD=BC=DH=3x,ED=2x,EH=ED+DH=5x,在RtEGH中,sinH=,sinCBF=,AB=CD=4,F为CD中点,CF=2,BF=10,经检验,符合题意,BC=4,故答案为:4【点睛】本题考查了矩形的性质,折叠的性质,全等三角形的判定与性质,解直角三角形,勾股定理,熟练掌握折叠的性质是解题的

13、关键4、等腰直角三角形【分析】根据非负数的意义和特殊锐角的三角函数值求出角A和角B,进而确定三角形的形状【详解】解:因为(2cosA)2+|1tanB|0,所以2cosA0,且1tanB0,即cosA,tanB1,所以A45,B45,所以 所以ABC是等腰直角三角形,故答案为:等腰直角三角形【点睛】本题考查特殊锐角三角函数值以及三角形的判定,掌握特殊锐角的三角函数值是正确判断的前提5、或【分析】由题意可知当P在AB上时,P是AB的中点,即AB=BP;当P在AB延长线上时,BP=3AB,在直角三角形中由正切公式求出即可【详解】解:(1)如图1所示,BC=3AB,PC=AB,BP=2PC,又四边形

14、ABCD是矩形,tanAPB=;(2)如图2所示,BC=3ABPC=AB,BP=4AB,tanAPB=综上所述APB的正切值为或故答案为:或【点睛】本题主要考查矩形性质和三角函数的定义,注意分类讨论思想的运用,解题的关键是分两种情况求出AB与BP的关系三、解答题1、(1)见解析;(2)【分析】(1)作的垂直平分线,交于点,则点即为所求;(2)根据(1)的结论可得,设,则,进而根据正切的定义即可求得答案【详解】解:(1)如图,作的垂直平分线,交于点,则点即为所求,连接 (2)设,则【点睛】本题考查了等腰三角形的性质,三角形的外角性质,垂直平分线的性质,正切的定义,勾股定理,掌握以上知识是解题的关

15、键2、(1)60,(2)3【分析】(1)根据特殊角三角函数值直接求解即可;(2)作ADBC于D,求出AD3,CD1,由三角函数定义即可得出答案【详解】解:(1)B为锐角且,B60;(2)作ADBC于D,如图所示:,BDAB3,AD,BC4,BD3,CDBCBD1,tanC3【点睛】本题考查了解直角三角形、特殊锐角的三角函数值、三角函数定义等知识;熟练掌握直角三角形的性质和特殊锐角的三角函数值是解题的关键3、(1)1;(2)【分析】(1)先化简绝对值、计算特殊角的正弦和正切值,再计算实数的混合运算即可得;(2)先计算特殊角的三角函数值,再计算二次根式的混合运算即可得【详解】解:(1)原式;(2)

16、原式【点睛】本题考查了特殊角的三角函数值的混合运算等知识点,熟记特殊角的三角函数值是解题关键4、3【分析】先根据零指数幂、负整数指数幂、绝对值的性质,特殊角锐角三角函数值化简,再合并,即可求解【详解】解: 【点睛】本题主要考查了零指数幂、负整数指数幂、绝对值的性质,特殊角锐角三角函数值等知识,熟练掌握零指数幂、负整数指数幂、绝对值的性质,特殊角锐角三角函数值是解题的关键5、(1)1;(2)【分析】(1)利用二次根式性质,负整数指数幂法则,特殊角的三角函数值,以及乘方的意义计算即可得到结果;(2)利用代入消元法求出解即可【详解】解:(1)原式222(1)22+11;(2),由得:x2y3,把代入得:6y9y+5,解得:y2,把y2代入得:x1,则方程组的解为【点睛】本题考查了实数计算和解方程组,解题关键是熟记特殊角三角函数值,熟练运用负指数、二次根式和解二元一次方程组的方法求解

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁