《精品试卷:北师大版七年级数学下册第四章三角形章节训练试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《精品试卷:北师大版七年级数学下册第四章三角形章节训练试卷(无超纲带解析).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第四章三角形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若三条线段中a3,b5,c为奇数,那么以a、b、c为边组成的三角形共有( )A1个B2个C3个D4个2、如图,已知
2、为的外角,那么的度数是( )A30B40C50D603、下列长度的各组线段中,能组成三角形的是()A1,2,3B2,3,5C3,4,8D3,4,54、下列长度的三条线段能组成三角形的是( )A3,4,7B3,4,8C3,4,5D3,3,75、如图,点O在AD上,AC,AOCBOD,ABCD,AD8,OB3,则OC的长为()A3B4C5D66、如图是55的正方形网格中,以D,E为顶点作位置不同的格点的三角形与ABC全等,这样格点三角形最多可以画出()A2个B3个C4个D5个7、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )A3cmB6cmC10cmD12
3、cm8、定理:三角形的一个外角等于与它不相邻的两个内角的和已知:如图,ACD是ABC的外角求证:ACDA+B证法1:如图,A70,B63,且ACD133(量角器测量所得)又13370+63(计算所得)ACDA+B(等量代换)证法2:如图,A+B+ACB180(三角形内角和定理),又ACD+ACB180(平角定义),ACD+ACBA+B+ACB(等量代换)ACDA+B(等式性质)下列说法正确的是()A证法1用特殊到一般法证明了该定理B证法1只要测量够100个三角形进行验证,就能证明该定理C证法2还需证明其他形状的三角形,该定理的证明才完整D证法2用严谨的推理证明了该定理9、下列长度的三条线段能组
4、成三角形的是( )A2,3,6B2,4,7C3,3,5D3,3,710、如图,若MBND,MBANDC,下列条件中不能判定的是()AAMCNBCABCDDMN第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在AOB和COD中,OAOB,OCOD,OAOC,AOBCOD50,连接AC、BD交于点M,连接OM下列结论:ACBD,AMB50;OM平分AOD;MO平分AMD其中正确的结论是 _(填序号)2、如图,在RtABC中,C90,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若EPF45,连接EF,当AC6,BC8,AB10时,则CEF的
5、周长为 _3、如图,与的顶点A、B、D在同一直线上,延长分别交、于点F、G若,则_4、如图,已知AB3,ACCD1,DBAC90,则ACE的面积是 _5、如图,方格纸中是9个完全相同的正方形,则1+2的值为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在和中, 连接,交于点,连接()求证:;()求的大小;()求证:2、如图,在ABC中,D是边AB上一点,E是边AC的中点,过点C作交DE的延长线于点F(1)求证:ADECFE;(2)若ABAC,CE5,CF7,求DB的长3、如图,(1),已知ABC中,BAC90,AE是过点A的一条直线,且B,C在A,E的异侧,于点D,于点E(1)试
6、说明:;(2)若直线AE绕点A旋转到图(2)位置时,其余条件不变,问BD与DE,CE的关系如何?请直接写出结果;4、平行线是平面几何中最基本、也是非常重要的图形在解决某些几何问题时,若能根据问题的需要,添加适当的平行线,往往能使证明顺畅、简洁请根据上述思想解决问题:(1)如图(1),ABCD,试判断B,D与E的关系;(2)如图(2),已知ABCD,在ACD的角平分线上取两个点M、N,使得AMN=ANM,求证:CAM=BAN5、如图,已知ABAD,ACAE,BCDE,延长BC分别交边AD、DE于点F、G(1)B与D相等吗?为什么?(2)若CAE49,求BGD的度数-参考答案-一、单选题1、C【分
7、析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数【详解】解:c的范围是:53c5+3,即2c8c是奇数,c3或5或7,有3个值则对应的三角形有3个故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键2、B【分析】根据三角形的外角性质解答即可【详解】解:ACD60,B20,AACDB602040,故选:B【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答3、D【分析】根据两边之和大于第三边,两边之差小于第三边判断即可【详解】1+2=3,A不能构成三角形;3+2=5,B不能构成三角形;3+48,C不能构成三角形;3+45,D能构成三角形;故选D【点睛】本
8、题考查了三角形的三边关系定理,熟练掌握性质定理是解题的关键4、C【分析】根据组成三角形的三边关系依次判断即可【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误B、 3,4,8中3+48,故不能组成三角形,与题意不符,选项错误C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确D、 3,3,7中3+37,故不能组成三角形,与题意不符,选项错误故选:C【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边5、C【分析】证明AOBCOD推出OB=OD,OA=OC,即可解决问题【详
9、解】解:AOC=BOD,AOC+COB=BOD+COB,即AOB=COD,A=C,CD=AB,AOBCOD(AAS),OA=OC,OB=OD,AD=8,OB3,OC=AO=AD-OD=AD-OB=5故选C【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题6、C【分析】观察图形可知:DE与AC是对应边,B点的对应点在DE上方两个,在DE下方两个共有4个满足要求的点,也就有四个全等三角形【详解】根据题意,运用“SSS”可得与ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点,如图故选C【点睛】本题考查三角形全等的判定方法,解答本题的关键是按照顺序分析,要做
10、到不重不漏7、C【分析】设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为cm,则 所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.8、D【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个
11、三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.9、C【分析】根据三角形的三边关系,逐项判断即可求解【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键10、A【分析】根据两个三角形全等的判定定理,有AA
12、S、SSS、ASA、SAS四种逐条验证【详解】解:A、根据条件AM=CN,MB=ND,MBA=NDC,不能判定ABMCDN,故A选项符合题意;B、AMCN,得出MAB=NCD,符合AAS,能判定ABMCDN,故B选项不符合题意;C、AB=CD,符合SAS,能判定ABMCDN,故C选项不符合题意;D、M=N,符合ASA,能判定ABMCDN,故D选项不符合题意故选:A【点睛】本题重点考查了三角形全等的判定定理,两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目二、填空题1、【分析】由证明得出,正确;由全等三角形的性质得出,由三角形的外角性
13、质得:,得出,正确;作于,于,如图所示:则,利用全等三角形对应边上的高相等,得出,由角平分线的判定方法得出平分,正确;假设平分,则,由全等三角形的判定定理可得,得,而,所以,而,故错误;即可得出结论【详解】解:,即,在和中,故正确;,由三角形的外角性质得:,故正确;作于,于,如图所示,则,平分,故正确;假设平分,则,在与中,而,故错误;所以其中正确的结论是故答案为:【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键2、4【分析】根据题意过点P作PMBC于M,PNAC于N,PKAB于K,在EB上取一点J,使得MJ=FN,连接PJ,进而利用
14、全等三角形的性质证明EF=EM+EN,即可得出结论【详解】解:如图,过点P作PMBC于M,PNAC于N,PKAB于K,在EB上取一点J,使得MJFN,连接PJBP平分BC,PA平分CAB,PMBC,PNAC,PKAB,PMPK,PKPN,PMPN,CPMCPNC90,四边形PMCN是矩形,四边形PMCN是正方形,CMPM,MPN90,在PMJ和PNF中,PMJPNF(SAS),MPJFPN,PJPF,JPFMPN90,EPF45,EPFEPJ45,在PEF和PEJ中,PEFPEJ(SAS),EFEJ,EFEM+FN,CEF的周长CE+EF+CFCE+EM+CF+FN2EM2PM,SABCBCA
15、C(AC+BC+AB)PM,PM2,ECF的周长为4,故答案为:4【点睛】本题考查角平分线的性质定理,正方形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问3、【分析】先证明ABCEDB,可得E=,然后利用三角形外角的性质求解【详解】解:,ABC=D,在ABC和EDB中,ABCEDB,E=,EGF=30+50=80,80+30=110,故答案为:110【点睛】本题考查了平行线的性质,全等三角形的判定与性质,以及三角形外角的性质,熟练掌握三角形的外角等于不相邻的两个内角和是解答本题的关键4、#【分析】先根据三角形全等的判定定理证出,再根据全等三角形的性质
16、可得,然后利用三角形的面积公式即可得【详解】解:在和中,则的面积是,故答案为:【点睛】本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键5、【分析】如图(见解析),先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,由此即可得出答案【详解】解:如图,在和中,故答案为:【点睛】本题考查了三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键三、解答题1、()见解析;();()见解析【分析】(I)先证明AOCBOD(SAS),即可证明AC=BD;(II)如图由于AOCBOD,所以OAC=OBD,再根据三角形外角等于与它不相邻的两个内角之和得出AOB=
17、AMB=36(III)如图,作两条垂线,再通过面积相等证明两条高也就是垂线相等,从而证明OM在AMD角平分线上,所以OMP=OMQ【详解】解:() , ,即 , ()如图,由()可得 , ()如图,过分别作,垂足分别为点, , , 点在的平分线上 【点睛】本题考查全等三角形判定及其性质,三角形外角定理、角平分线的性质与判定,掌握这些是本题解题关键,同时也要会添加辅助线2、(1)见解析;(2)DB=3【分析】(1)先证明 再证明从而可得结论;(2)利用全等三角形的性质证明再求解 从而可得答案.【详解】证明:(1) E是边AC的中点, ADECFE;(2) ADECFE,CE5,CF7, ABAC
18、, 【点睛】本题考查的是全等三角形的判定与性质,掌握“利用证明三角形全等及利用全等三角形的性质求解线段的长度”是解本题的关键.3、(1)证明见解析;(2)BD=DE-CE,理由见解析【分析】(1)根据已知利用AAS判定ABDCAE从而得到BD=AE,AD=CE,因为AE=AD+DE,所以BD=DE+CE;(2)根据已知利用AAS判定ABDCAE从而得到BD=AE,AD=CE,因为AD+AE=BD+CE,所以BD=DE-CE【详解】解:(1)BAC=90,BDAE,CEAE,BDA=AEC=90,ABD+BAE=90,CAE+BAE=90ABD=CAE,AB=AC,在ABD和CAE中,ABDCA
19、E(AAS),BD=AE,AD=CE,AE=AD+DE,BD=DE+CE;(2)与、的数量关系是BD=DE-CE,理由如下:BAC=90,BDAE,CEAE,BDA=AEC=90,ABD+DAB=DAB+CAE,ABD=CAE,AB=AC,在ABD和CAE中,ABDCAE(AAS),BD=AE,AD=CE,AD+AE=BD+CE,DE=BD+CE,BD=DE-CE【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS,SAS,AAS,HL等这种类型的题目经常考到,要注意掌握4、(1)BED=BD;(2)证明见详解【分析】(1)作EFAB,证明ABEFCD,得到B=BEF,D=DEF
20、,即可证明BED=BD;(2)根据(1)结论得到N=BANDCN,进而得到AMN=BANDCN,根据三角形外角定理得到AMN=ACMCAM,BANDCN=ACMCAM,再根据DCN=CAN,即可证明CAM=BAN【详解】解:如图1,作EFAB,ABCD,ABEFCD,B=BEF,D=DEF,BED=BEF+DEF,BED=BD;(2)证明:ABCD,由(1)得N=BANDCN,AMN=ANM,AMN=BANDCN,AMN是ACM外角,AMN=ACMCAM,BANDCN=ACMCAM,CN平分ACD,DCN=CAN,CAM=BAN【点睛】本题考查了平行线的性质,角平分线的定义,三角形的外角定理等知识,熟知相关定理并根据题意添加辅助线进行角的转化是解题关键5、(1)相等,理由见解析;(2)【分析】(1)根据SSS证明,然后由全等三角形对应边相等即可证明;(2)由可得,进而可求出,然后根据三角形外角的性质即可求出BGD的度数【详解】解:(1)相等,理由如下:在和中,;(2),【点睛】此题考查了全等三角形的性质和判定,三角形外角的性质,解题的关键是熟练掌握根据题意证明