《精品解析2022年人教版九年级数学下册第二十六章-反比例函数专项攻克试题(含解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版九年级数学下册第二十六章-反比例函数专项攻克试题(含解析).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十六章-反比例函数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点是反比例函数图象上一点,过点分别向坐标轴作垂线,垂足为,反比例函数的图象经过的中点,与,分别相交于
2、点,连接并延长交轴于点,连接则的面积为( )A4B1C2D32、如图,四边形OABC是矩形,四边形ADEF是边长为2的正方形,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点F在线段AB上,点B,E在反比例函数y(k0)的图象上,若S四边形OABCS四边形ADEF2,则k的值为()A2B3C4D63、下列函数图象是双曲线的是()Ayx2+3Byx5CyDy4、反比例函数图象上有三个点,其中,则,的大小关系是( )ABCD5、函数ykxk与y在同一平面直角坐标系中的图象可能是()ABCD6、下列说法正确的个数有( )方程的两个实数根的和等于1;半圆是弧;正八边形是中心对称图形;“抛掷3枚质地均
3、匀的硬币全部正面朝上”是随机事件;如果反比例函数的图象经过点,则这个函数图象位于第二、四象限A2个B3个C4个D5个7、已知点在函数的图象上,则的大小关系是( )ABCD不能确定8、如图,曲线是顶点为与轴交于点的抛物线的部分,曲线是双曲线的一部分,由点开始不断重复“”的过程,形成一组波浪线,点与点均在该波浪线上,过点、分别作轴的垂线,垂是为,连,则四边形的面积为( )A72B36C16D99、如图,点P,点Q都在反比例函数y的图象上,过点P分别作x轴、y轴的垂线,两条垂线与两坐标轴围成的矩形面积为S1,过点Q作x轴的垂线,交x轴于点A,OAQ的面积为S2,若S1+S23,则k的值为()A2B1
4、C1D210、如图,过点O作直线与双曲线y(k0)交于A,B两点,过点B作BCx轴于点C,作BDy轴于点D在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AEAF设图中矩形ODBC的面积为S1,EOF的面积为S2,则S1,S2的数量关系是()AS1S2B2S1S2C3S1S2D4S1S2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若反比例函数的图象经过点A(-2,4)和点B(8,a),则a的值为_2、在平面直角坐标系中,已知反比例函数,有若干个正方形如图依次叠放,双曲线经过正方形的一个顶点(A1,A2,A3在反比例函数图象上),以此作图,我们可以建立了
5、一个“凡尔赛阶梯”,那么A2的坐标为 _3、点在反比例函数图象上,则_(填“”或“”号)4、如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=8,则k的值为_ 5、若点都在反比例函数的图象上,则的从小到大的关系是_三、解答题(5小题,每小题10分,共计50分)1、在反比例函数中,已知正方形与正方形,求A的坐标2、如图,在平面直角坐标系中,横坐标为2的点A在反比例函数y(k0)的图象上,过点A作ABx轴于点B,OA:OB:1(1)求k的值;(2)在x轴的负半轴上找点P,将点A绕点P顺时针旋转90,其对应点A落在此反比例函数第三象限的图象上,求点P的坐标3、点A是双曲线与直线在第二象限的
6、交点,AB垂直x轴于点B,且; (1)求两个函数的表达式;(2)求AOC的面积;(3)直接写出一次函数值大于反比例函数值的x的取值范围4、如图,一次函数(k0)与反比例函数(m0)的图象交于点A(1,a)和B(-2,-1)与轴交于点(1)_,_,当时,的取值范围为_;(2)连接、,求的面积5、如图,直线y=3x+3与x轴交于点A,与反比例函数 的图像交于点B(1,m)(1)求反比例函数的表达式(2)若C是反比例函数图像上一点,连接AC,若,求直线BC的表达式-参考答案-一、单选题1、D【分析】先求出,再由的面积的面积,即可求解【详解】解:设点,则,是的中点,点,则,连接,如图所示:轴,根据同底
7、等高,三角形面积相等及反比例系数的绝对值的几何意义为三角形的面积,的面积的面积,故答案为:【点睛】本题考查的是反比例函数的性质、面积的计算等知识,解题的关键是熟练掌握反比例函数的性质2、D【分析】设B点坐标为(m,n),则OA=m,AB=n,根据S四边形OABCS四边形ADEF2,得到,即,则,由此即可得到答案【详解】设B点坐标为(m,n),OA=m,AB=n,S四边形OABCS四边形ADEF2,即,又点B在反比例函数上,故选D【点睛】本题主要考查了反比例函数比例系数的几何意义,解题的关键在于能够熟练掌握反比例函比例系数的几何意义3、D【分析】根据反比例函数y=(k0)的图象是双曲线可得答案【
8、详解】解:A、yx2+3是二次函数,图象是抛物线,故此选项不符合题意;B、yx5是一次函数,图象是直线,故此选项不符合题意;C、yx是正比例函数,图象是过原点的直线,故此选项不符合题意;D、y是反比例函数,图象是双曲线,故此选项符合题意;故选:D【点睛】此题主要考查了反比例函数定义,关键是掌握形如y=(k为常数,k0)的函数称为反比例函数,反比例函数图象是双曲线4、B【分析】首先根据判断出反比例函数图象在第二,四象限,然后根据函数的增减性求解即可【详解】解:反比例函数中,此函数的图象在二、四象限,在每一象限内随的增大而增大,故选:B【点睛】本题考查反比例函数的图像和性质,熟练掌握反函数的图象和
9、增减性是解题关键5、C【分析】分两种情况讨论,当k0时,分析出一次函数和反比例函数所过象限;再分析出k0时,一次函数和反比例函数所过象限,符合题意者即为正确答案【详解】分类讨论当时,的图象过第一、二、四象限,的图象过第一、三象限,当时,的图象过第一、三、四象限,的图象过经过第二、四象限综上,符合题意的选项为C故答案为:C【点睛】此题考查的是反比例函数和一次函数的综合题型,掌握反比例函数和一次函数的图象所经过的象限与各项系数的关系是解决此题的关键6、B【分析】根据所学知识对五个命题进行判断即可【详解】1、,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3
10、、八边形绕中心旋转180以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键7、A【分析】根据反比例函数图象上点的坐标特征可分别计算出的值,然后比较大小即可【详解】点在函数的图象上,故选:A【点睛】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数8
11、、B【分析】根据二次函数顶点坐标求出点B,从而求出反比例函数解析式,再确定点P与点Q位置,由直角梯形面积公式即可求出答案【详解】如图,过点B作x轴的垂线交于,取DE的中点,过点作x轴的垂线交于,把代入中得:,反比例函数解析式为,由图可知,每经过6为一次循环,点P离x轴的距离与点B离x轴的距离相同,点Q离x轴距离与点离x轴距离相同,令代入中得:,故选:B【点睛】本题考查二次函数与反比例函数的综合应用,根据题意找出循环周期是解题的关键9、D【分析】根据反比例函数的几何意义得到,如何代入解方程,再根据图象在二、四象限确定的值【详解】解:由题意得,则,解得,图象在二、四象,故选:D【点睛】本题考查了反
12、比例函数的几何意义,解题的关键是掌握在反比例函数图象中任取一点,过这一个点向轴和轴分别作垂线,与坐标轴围成的矩形的面积是定值在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变10、B【分析】过点A作AMx轴于点M,根据反比例函数图象系数k的几何意义即可得出S矩形ODBC=-k、SAOM=-k,再根据中位线的性质即可得出SEOF=4SAOM=-2k,由此即可得出S1、S2的数量关系【详解】解:过点A作AMx轴于点M,如图所示AMx轴,BCx轴,BDy轴,S矩形ODBC=-k,SAOM=-kAE=AFOFx轴,AMx轴,AM=OF,ME=OM=O
13、E,SEOF=OEOF=4SAOM=-2k,2S矩形ODBC=SEOF,即2S1=S2故选:B【点睛】本题考查了反比例函数图象系数k的几何意义以及三角形的中位线,根据反比例函数图象系数k的几何意义找出S矩形ODBC=-k、SEOF=-2k是解题的关键二、填空题1、【解析】【分析】把点坐标代入解析式,然后求时函数值即可【详解】把点坐标代入解析式得:,解得:反比例函数,在反比例函数上,故答案为:【点睛】本题主要考查求反比例函数解析式,和函数值,解题的关键是熟知待定系数法确定函数关系式2、【解析】【分析】根据题意求得A3(1,1),设A2所在的正方形的边长为m,则A2(m,m+1),由图象上点的坐标
14、特征得到km(m+1)1,解得m,即可求得A2的坐标为【详解】解:反比例函数的解析式为,A3所在的正方形的边长为1,A3(1,1),设A2所在的正方形的边长为m,则A2(m,m+1),m(m+1)1,解得m(负数舍去),A2的坐标为,故答案为:【点睛】本题主要考查了反比例函数的图象性质,正方形的性质,一元二次方程的计算,准确计算是解题的关键3、【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的大小进行解答即可【详解】解: ,反比例函数的图象的两个分支分别位于一、三象限,且在每一象限内,y随x的增大而减小530,在第一象限,故答案为:【点睛】本题考查的是反比例函
15、数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键4、【解析】【分析】作轴于,得出,在中,由勾股定理得出方程,解方程求出,得出,即可求出的值【详解】解:过点作轴,垂足为点,设,把代入中,得,由勾股定理,得,即,解得(负值舍去)把代入,得,故答案是:【点睛】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法,解题的关键是求出点的坐标是解决问题的关键5、【解析】【分析】先根据反比例函数中k0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论【详解】解:反比例函数y中k0,函数图象的两个分支分别位于二、四象限,且在每
16、一象限内y随x的增大而增大30,10,点A(3,y1),B(1,y2)位于第二象限,y10,y20,310,0y1y220,点C(2,y3)位于第四象限,y30,y3y1y2故答案为:【点睛】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单三、解答题1、(0,)【分析】由正方形的性质得到AB=BD=CD=AC,BE=EF=FG=BG,设E(m,m),代入反比例函数解析式,求出m值,再设AB=BD=CD=AC=a,得到AG=a+,AC=a,即C(a,a+),代入函数解析式,求出a值,从而可得点A坐标【详解】解:四边形ABDC和四边形BEFG是正方形,AB=
17、BD=CD=AC,BE=EF=FG=BG,点E在上,设E(m,m),m2=2,m=,即BE=EF=FG=BG=,设AB=BD=CD=AC=a,则AG=a+,AC=a,即C(a,a+),点C在上,则,解得:a=或(舍),AG=+=,A(0,)【点睛】本题考查了反比例函数综合,正方形的性质,解一元二次方程,有一定难度,解题的关键是抓住点C和点E在函数图像上2、(1);(2)点P的坐标为【分析】(1)首先根据点A的横坐标为2得到,然后根据OA:OB:1求出的长度,利用勾股定理求出的长度,即可求出点A的坐标,代入反比例函数y即可求出k的值;(2)过点A作轴交于点G,设点P(a,0),根据题意证明,然后
18、表示出点A的坐标,代入反比例函数表达式即可求解【详解】解:(1)点A的横坐标为2,且ABx轴,OA:OB:1,在中,点A的坐标为(2,4),将点A(2,4)代入y,得:(2)如图所示,点A绕点P顺时针旋转90,其对应点A落在此反比例函数第三象限的图象上,过点A作轴交于点G,设点P(a,0),又,则点A的坐标为,点A在反比例函数图像上,解得:(舍去),故点P的坐标为【点睛】此题考查了勾股定理的运用,全等三角形的性质和判定,求反比例函数的比例系数,反比例函数和几何综合,解题的关键是根据题意作出辅助线构造全等三角形3、(1)y=,y=-x+2;(2)4;(3)【分析】(1)设出A坐标(x,y),表示
19、出OB与AB,进而表示出三角形ABO面积,由已知面积确定出反比例函数k的值,进而确定出一次函数;(2)联立反比例函数与一次函数解析式,求出A与C坐标即可;由一次函数解析式求出交点的坐标,然后三角形AOC面积=两个三角形面积的和,求出即可;(3)根据图象即可求得【详解】解:(1)设A点坐标为(x,y)则=, =, k , k=-3,所求的两个函数的解析式分别为y=-,y=-x+2;(2)由y=-x+2,令x=0,得y=2直线y=-x+2与y轴的交点D的坐标为(0,2),由题意,得 ,解得,交点A为(-1,3),C为(3,-1),(3)根据图象得,一次函数值大于反比例函数值的x的取值范围为:或【点
20、睛】本题考查反比例函数与一次函数的交点问题,三角形的面积等知识,解题的关键是熟练掌握待定系数法解决问题,学会构建方程组确定两个函数的交点坐标,学会用分割法求三角形面积4、(1),或;(2)【分析】(1)先把A点坐标代数 (m0)求出m得到反比例函数解析式,然后利用待定系数法求出k的值,然后根据图象即可求得当y1y2时,x的取值范围;(2)先利用一次函数解析式确定M点坐标,然后根据三角形面积公式求解【详解】解:反比例函数的图象经过点,反比例函数的表达式为点在反比例函数图象上,点的坐标为一次函数的图象经过点和点,解得,观察图象,当时,的取值范围或;故答案为:,或;一次函数与轴的交点为,令x=0,y
21、=1【点睛】本题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,三角形面积以及函数与不等式的关系,数形结合是解题的关键5、(1);(2)【分析】(1)先求得B(1,6),再利用待定系数法求反比例函数的表达式;(2)利用等腰直角三角形的性质求得C(2,3),利用待定系数法即可得求直线BC的表达式【详解】解:(1)直线y=3x+3经过点B(1,m),点B的坐标为(1,6),反比例函数经过点B,反比例函数的表达式为;(2)点A为直线y=3x+3与x轴的交点,A(-1,0),如图,过C作轴于点D,设点C的坐标为,解得,(不合题意,舍去),经检验,是分式方程的解,C(2,3),设直线BC的表达式为,将B、C两点的坐标代入得,解得,直线BC的表达式为【点睛】本题是反比例函数与一次函数的综合题,考查了待定系数法求函数的解析式,等腰直角三角形的性质,利用等腰直角三角形的性质求得点C的坐标是解题的关键