《精品解析2021-2022学年人教版八年级数学下册第十七章-勾股定理章节测试练习题.docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年人教版八年级数学下册第十七章-勾股定理章节测试练习题.docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十七章-勾股定理章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四组数中,是勾股数的是( )A5,12,13B,C1,D7,24,262、如图,RtABC中,ACB90,
2、ABC30,分别以AC,BC,AB为一边在ABC外面做三个正方形,记三个正方形的面积依次为S1,S2,S3,已知S14,则S3为()A8B16CD+43、满足下列条件的ABC不是直角三角形的是()ABC1,AC2,ABBCBC:AC:AB3:4:5DA:B:C3:4:54、如图,点A在点O的北偏西的方向5km处,根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是( )A点B在点A的北偏东方向5km处B点B在点A的北偏东方向5km处C点B在点A的北偏东方向km处D点B在点A的北偏东方向km处5、如图,在ABC中,BC2,C45,若D是AC的三等分点(ADCD),且ABBD,则AB的长为( )
3、ABCD6、如图,在中,是线段上的动点(不含端点、)若线段长为正整数,则点的个数共有( )A4个B3个C2个D1个7、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m后,下端刚好接触到地面,则学校旗杆的高度为( )AmBmCmDm8、以下列长度的三条线段为边,能组成直角三角形的是( )A4,5,6B8,15,17C2,3,4D1,39、如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )cmA15B20C18D3010、下列四组
4、线段中,不可以构成直角三角形的是( )A3,4,5B2,3,4C,3,4D7,24,25第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一个圆柱形工艺品高为16厘米,底面周长12厘米,现在需要从下底的处绕侧面一周,到上底(的正上方)处镶嵌一条金丝,则金丝至少_厘米2、如图,ABC中,CACB,ACB90,E为BC边上一动点(不与点B、点C重合),连接AE并延长,在AE延长线上取点D,使CDCA,连接CD,过点C作CFAD交AD于点F,交DB的延长线于点G,若CD3,BG1,则DB_3、如图,在长方形ABCD中,AB3,BC2,E是BC中点,点F是线段AB上一个动点
5、(1)连接DF,则DF+EF的最小值为 _;(2)以EF为斜边向斜上方作等腰RtEFG,点F从点B运动到点A的过程中,AG的最小值为 _4、如图,在一只底面半径为3cm,高为8cm的圆柱体状水杯中放入一支13cm长的吸管,那么这支吸管露出杯口的长度是 _5、如图,等腰ABC中,ABAC,BC,BD是AC边上的中线,G是ABC的重心,则GD_三、解答题(5小题,每小题10分,共计50分)1、已知,如图,ACB和ECD都是等腰直角三角形,ACB=ECD=90,点D在AB边上(1)图中哪一对三角形全等?说明理由;(2)若BD=9,AD=12,求DE的长2、如图,在Rt中,动点D从点C出发,沿边向点B
6、运动,到点B时停止,若设点D运动的时间为秒点D运动的速度为每秒1个单位长度(1)当时, , ;(2)用含t的代数式表示的长;(3)当点D在边CA上运动时,求t为何值,是以BD或CD为底的等腰三角形?并说明理由;(4)直接写出当是直角三角形时,t的取值范围 3、如图在的正方形网格中,每个小正方形的顶点称为格点点A,点B都在格点上,按下列要求画图(1)在图中,AB为一边画,使点C在格点上,且是轴对称图形;(2)在图中,AB为一腰画等腰三角形,使点C在格点上;(3)在图中,AB为底边画等腰三角形,使点C在格点上4、如图,RtABC中,A90,AB8cm,AC6cm,P是从A点出发的动点,沿若A-B-
7、C-A在三边上运动一周,速度为每秒2cm设P点的运动时间为t秒(1)当t6.5秒时,求出CP的长(2)是否存在t的值,使得时间为t秒时ABP的面积,与时间为(t+2)秒时ACP的面积相等?若存在,求出t的值;若不存在,请说明理由(3)当t 时,ACP为等腰三角形(直接给出答案)5、已知44的方格纸如图,请在图中画出一个直角边长为的等腰直角三角形,且三角形的三个顶点都在小方格的顶点上 -参考答案-一、单选题1、A【分析】根据勾股数的定义:有、三个正整数,满足,称为勾股数由此判定即可【详解】解:、,是勾股数,符合题意;、,不是勾股数,不符合题意;、,不是整数,不是勾股数,不符合题意;、,不是勾股数
8、,不符合题意故选:【点睛】本题考查了勾股数,熟练掌握勾股数的定义是解题的关键2、B【分析】根据直角三角形30度角的性质得到AB=2AC,再利用正方形面积公式求值【详解】解:RtABC中,ACB90,ABC30,AB=2AC,S3=AB2=4AC2=4S116,故选:B【点睛】此题考查了直角三角形30度角的性质:直角三角形30度角所对的直角边等于斜边的一半,熟记性质是解题的关键3、D【分析】根据勾股定理的逆定理可判定A、C,由三角形内角和可判定B、D,可得出答案【详解】A、当BC1,AC2,AB时,满足BC2+AB2=1+3=4=AC2,所以ABC为直角三角形;B、当A:B:C=1:2:3时,可
9、设A=x,B=2x,C=3x,由三角形内角和定理可得x+2x+3x=180,解得x=30,所以A=30,B=60,C=90,所以ABC为直角三角形,C、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以ABC为直角三角形;D、当A:B:C=3:4:5时,可设A=3x,B=4x,C=5x,由三角形内角和定理可得3x+4x+5x=180,解得x=15,所以A=45,B=60,C=75,所以ABC为锐角三角形,故选:D【点睛】本题主要考查直角三角形的判定方法,掌握直角三角形的判定方法是解题的关键,主要有勾股定理的逆定理,有一个角为直角的三角形4、
10、D【分析】过A作ACOM交ON于C,作ADON,求出AB及DAB即可得到答案【详解】过A作ACOM交ON于C,作ADON,如图:MON=90,AOC=30,AOM=120,由作图可知,OB平分AOM,AOB=AOM=60,B=30,在RtAOB中,OB=2OA=10,AOC=30,ACO=90,CAO=60,DAB=90-BAC=CAO=60,B在A北偏东60方向km处,故选:D【点睛】本题考查作图-基本作图、方向角、角平分线的作法等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型5、B【分析】作BEAC于E,根据等腰三角形三线合一性质可得AE=DE,根据C45,得出EBC=180-C
11、-BEC=180-45-90=45,可得BE=CE,利用勾股定理求出CE=BE=2,根据D是AC的三等分点得出AE=DE=CD,求出CD=1,利用勾股定理即可【详解】解:作BEAC于E,ABBD,AE=DE,C45,EBC=180-C-BEC=180-45-90=45,BE=CE, 在RtBEC中,CE=BE=2,D是AC的三等分点,CD=,AD=AC-CD=,AE=DE=CD,CE=CD+DE=2CD=2,CD=1,AE=1,在RtABE中,根据勾股定理故选B【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股
12、定理,三等分线段是解题关键6、B【分析】首先过A作AEBC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案【详解】解:如图:过A作AEBC于E,在ABC中,AB=AC=5,BC=8,当AEBC,EB=EC=4,AE=,D是线段BC上的动点(不含端点B,C).若线段AD的长为正整数,3AD5,AD=3或AD=4,当AD=4时,在靠近点B和点C端各一个,故符合条件的点D有3点.故选B.【点睛】本题主要考察了等腰三角形的性质,勾股定理的应用,解题的关键是熟练掌握等腰三角形的性质,勾股定理的计算.7、C
13、【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗杆的高【详解】解:根据题意画出图形如下所示:则BC8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在RtABC中,AB2+BC2AC2,即x2+82(x+2)2,解得x15,故AB15m,即旗杆的高为15m故选:C【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图8、B【分析】根据勾股定理的逆定理:若三角形三边分别为a,b,c,满足,则该三角形是以
14、c为斜边的直角三角形,由此依次计算验证即可【详解】解:A、,则长为4,5,6的线段不能组成直角三角形,不合题意;B、,则长为8,15,17的线段能组成直角三角形,符合题意;C、,则长为2,3,4的线段不能组成直角三角形,不合题意;D、,则长为1,3的线段不能组成直角三角形,不合题意;故选:B【点睛】本题考查勾股定理的逆定理,掌握并熟练运用勾股定理的逆定理是解题关键9、A【分析】把圆柱沿蚂蚁所在的高剪开并展开在一个平面内,得到一个矩形,作A点关于DF的对称点B,分别连接BD、BC,过点C作CEDH于点E,则BC就是蚂蚁到达蜂蜜的最短距离,根据勾股定理即可求得BC的长【详解】把圆柱沿蚂蚁所在的高剪
15、开并展开在一个平面内,得到一个矩形,作A点关于DF的对称点B,分别连接BD、BC,过点C作CEDH于点E,如图所示:则DB=AD=4cm,由题意及辅助线作法知,M与N分别为GH与DF的中点,且四边形CMHE为长方形,CE=MH=9cm,EH=CM=4cm,DE=DHEH=124=8cm,BE=DE+DB=8+4=12cm ,在RtBEC中,由勾股定理得:,即蚂蚁到达蜂蜜的最短距离为 15cm,故选;:A【点睛】本题考查了勾股定理,两点间线段最短,关键是把空间问题转化为平面问题解决,这是数学上一种重要的转化思想10、B【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可【详解】
16、解:A. 3+4=9+16=25=5,能构成直角三角形,故不符合题意;B. 2+3=4+9=134,不能构成直角三角形,故符合题意;C. ()+3=7+9=16=42,能构成直角三角形,故不符合题意;D. 7+24=49+576=625=252,能构成直角三角形,故不符合题意故选B【点睛】本题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计二、填空题1、20【分析】将圆柱的侧面展开,得到一个矩形,然后利用两点之间线段最短可得的长即是金丝的最短路线长,然后由勾股定理求解即可【详解】解:解:沿AB剪开可得矩形,如图所示:圆柱的高为16厘米,底面圆的周长为12厘米,=AB=16厘米,=12厘米,
17、在中,即金丝的最短路线长是:20厘米故答案为:20【点睛】本题考查了平面展开最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径一般情况是两点之间,线段最短在平面图形上构造直角三角形解决问题2、【分析】连接AG,设DCBx,根据等腰三角形的性质和三角形内角和定理求出ADB45,然后根据等腰三角形三线合一性质得出DFAF,然后根据垂直平分线的性质得出GADG,进一步得到是等腰直角三角形,在中,根据勾股定理求出AB的长度,设BDm,然后在中,利用勾股定理即可求出DB的长度【详解】解:如图,连接AG设DCBxCACBCD,CADCDA(18090x)45x,CDBCBD(18
18、0x)90x,ADBCDBCDA90x(45x)45,CGAD,CACD,DFAF,GADG,GADGDA45,AGB90,设BDm,则AGDGm+1,在中,AB3,在中,即(3)212+(m+1)2,解得m1故答案为:1【点睛】此题考查了等腰三角形的性质,勾股定理,垂直平分线的性质以及三角形内角和定理等知识,解题的关键是根据题意连接AG,得出是等腰直角三角形3、 #【分析】(1)作点E关于AB的对称点E,连接DE于AB交于F(图中F),则DE+DF最小值是DE的长,进而勾股定理求解即可(2)以EF为斜边向斜上方作等腰RtEFG,过点分别作的垂线,垂直分别为,上取,连接,则,证明即可得点在线段
19、上当时取得最小值,进而勾股定理即可求得的长【详解】解:(1)如图1,作点E关于AB的对称点E,连接DE于AB交于F(图中F),则DE+DF最小值是DE的长,在RtCDE中,CD3,CE3,DE3,故答案是:3;(2)如图,以EF为斜边向斜上方作等腰RtEFG,过点分别作的垂线,垂直分别为,上取,连接,则是等腰直角三角形是的角平分线是等腰直角三角,又点在线段上当时取得最小值是等腰直角三角形故答案是:【点睛】本题考查了勾股定理,等腰直角三角形的性质,角平分线的性质,正确的添加辅助线是解题的关键4、3cm【分析】根据半径我们可以求出直径,沿底面的半径切开圆柱,则平面为一个底为6cm,高为8cm的矩形
20、,根据勾股定理可以计算对角线的长度,吸管露出杯口的长度为吸管长减去矩形对角线长【详解】解:由题意知AC=6cm,BC=8cm,AD=13cm在直角ABC中,BC=8cm,AC=6cm,则cm,BD=AD-AB=13cm-10cm=3cm故答案为:3cm【点睛】本题考查了矩形中勾股定理的运用,考查了矩形各内角为直角的性质,本题中正确的根据勾股定理计算AB是解题的关键5、【分析】作于,求出,设,则,在和中,由勾股定理得出方程,求出,由勾股定理得出,再由重心定理即可得出答案【详解】解:作于,如图所示:是边上的中点,设,则,在和中,由勾股定理得:,即,解得:,是的重心,;故答案为:【点睛】本题考查了三
21、角形的重心、等腰三角形的性质、勾股定理等知识;解题的关键是熟练掌握勾股定理和三角形的重心定理三、解答题1、(1)ACEBCD,理由见解析;(2)15【分析】(1)证明再结合从而可得结论;(2)由全等三角形的性质证明 再利用勾股定理可得答案.【详解】解:(1)ACEBCD,理由如下: ACB和ECD都是等腰直角三角形,ACB=ECD=90, (2) 【点睛】本题考查的是等腰直角三角形的性质,全等三角形的判定与性质,勾股定理的应用,证明是解本题的关键.2、(1)1;3;(2)当时,;当时,;(3)t=3秒或3.6秒时,CBD是以BD或CD为底的等腰三角形;(4)或秒【分析】(1)由勾股定理先求出的
22、长度,则时,点D在线段AB上,即可求出答案;(2)由题意,可分为:,两种情况,分别表示出的长度即可;(3)分CD=BC时,CD=3;BD=BC时,过点B作BFAC于F,根据等腰三角形三线合一的性质可得CD=2CF,即可得到答案(4)分CDB=90时,利用ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程速度计算;CBD=90时,点D在线段AB上运动,然后即可得解;【详解】解:(1)在Rt中,点D运动的速度为每秒1个单位长度,当,点D在线段CA上;当,点D在线段AB上;当时,点D在线段AB上,;故答案为:1;3;(2)根据题意,当时,点D在线段CA上,且,;当时
23、,点D在线段AB上,;(3)CD=BC时,CD=3,t=31=3;BD=BC时,如图,过点B作BFAC于F,设,则,CD=2CF=1.82=3.6,t=3.61=3.6,综上所述,t=3秒或3.6秒时,CBD是以BD或CD为底的等腰三角形(4)CDB=90时,SABC=ACBD=ABBC,即=43,解得BD=2.4,CD=,t=1.81=1.8秒;CBD=90时,点D在线段AB上运动,综上所述,t=1.8或秒;故答案为:或秒;【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,(3)(4)难点在于要分情况讨论,作出图形更形象直观3、(1)见详解;(2)见详解;(3)见详解【分析】
24、(1)先根据以AB为边ABC是轴对称图形,得出ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股定理求出AB的长,利用平移画出点C即可;(3)先求出以AB为底等腰直角三角形腰长AC=,利用平移作出点C即可【详解】解:(1)以AB为边ABC是轴对称图形,ABC为等腰三角形,AB长为3,画以AB为直角边,点B为直角顶点ABC如图也可画以AB为直角边,点A为直角顶点ABC如图;(2)根据勾股定理AB=,AB为一腰画等腰三角形,另一腰为,以点A为顶角顶点根据勾股定理构建横1竖3,或横3竖1;点A向左1格再向下平移3格得C1,连结AC1,C1B,得等腰ABC1,点A向右3
25、格再向上平移1格得C2,连结AC2,BC2,得等腰ABC2,点A向右3格再向下平移1格得C3,连结AC3,BC3,得等腰ABC3, 点B向右3格再向上平移1格得C4,连结AC4,BC4,得等腰ABC4,点B向右3格再向下平移1格得C5,连结AC5,BC5,得等腰ABC5,点B向右1格再向上平移3格得C6,连结AC6,BC6,得等腰ABC6; (3)AB为底边画等腰三角形,等腰直角三角形腰长为m,根据勾股定理,即,解得,根据勾股定理AC=,横1竖2,或横2竖1得图形,点A向右平移2格,再向下平移1格得点C1,连结AC1,BC1,得等腰三角形ABC1,点A向左平移1格,再向下平移2格得点C2,连结
26、AC2,BC2,得等腰三角形ABC2【点睛】本题考查网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质,掌握网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质是解题关键4、(1)5cm;(2)t5.5;(3)3或5.4或6或6.5【分析】(1)先根据速度时间求出点P的路程,由勾股定理求出BC的长,进而求出CP的长;(2)由等面积法求得AD的长,要是t秒时ABP的面积与时间为(t+2)秒时ACP的面积相等可以判断出点P在BC 上,分别表示出ABP、ACP的面积,列出关于t的方程,解除方程即可;(3)分别讨论点P在AB、BC、上存在的所有情况即可得出结论【详解】
27、解:(1)P点速度为每秒2cm运动时间为t6.5秒时,点P的路程为:26.513cmRtABC中,A90,AB8cm,AC6cm,cm,AB+BC8+1018cm,CP18135cm(2)当t5.5秒时,使得时间为t秒时ABP的面积,与时间为(t+2)秒时ACP的面积相等,理由如下:过点A作ADBC于点D,即6810AD,解得ADcm,使得时间为t秒时ABP的面积,与时间为(t+2)秒时ACP的面积相等,点P在BC上4t7,即,解得:t5.5秒(3)当点P在BC上时,如图,要使ACP为等腰三角形,ACAP1,即2t6,解得:t3,当点P在BC上时,当ACAP时,如图ACAP26,AD4.8,D
28、P2DC,AB+BP2AB+BCP2C183.63.610.8cm,2t10.8,解得:t5.4,当ACCP时,此时ACCP36cm,BP31064cm,AB+BP38+412cm,2t12,解得:t6,当PCPA时,过点P4作P4GAC于点G,AB/P4G,AGCG,点P4为BC的中点,此时AB+BP48+513cm,即2t13,解得:t6.5,综上所述:点t3或5.4或6或6.5时,ACP为等腰三角形,故答案为:3或5.4或6或6.5【点睛】本题考查了勾股定理,等腰三角形的性质和判定,平行线段的性质等知识,熟练掌握等腰三角形的判定解题的关键5、见解析【分析】根据网格结构,所作三角形的直角边为以1、2为直角边的直角三角形的斜边即可【详解】解:如图,即为所求作,理由: 即为所求作的等腰直角三角形【点睛】本题考查了勾股定理的应用,是基础题,熟练掌握网格结构,并对熟悉勾股数是解题的关键