《模拟测评中考数学第二次模拟试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《模拟测评中考数学第二次模拟试题(含答案解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 中考数学第二次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、化简的结果是( )A1BCD2、某种速冻水饺的储藏温度是,四个冷藏室的温度如下,不适合
2、储藏此种水饺是( )ABCD3、是-2的( ) A相反数B绝对值C倒数D以上都不对4、如图,是的边上的中线,则的取值范围为( )ABCD5、如图,在数轴上有三个点A、B、C,分别表示数,5,现在点C不动,点A以每秒2个单位长度向点C运动,同时点B以每秒个单位长度向点C运动,则先到达点C的点为( )A点AB点BC同时到达D无法确定6、在解方程时,去分母正确的是( )ABCD7、下列分式中,最简分式是( )ABCD8、观察下列算式,用你所发现的规律得出的个位数字是( ),A2B4C6D89、下列图形中,既是轴对称图形,又是中心对称图形的是( )AB 线 封 密 内 号学级年名姓 线 封 密 外 C
3、D10、下列计算: 0(5)=0+(5)=5; 534=512=7; 43()=4(1)=4; 122(1)2=1+2=3其中错误的有()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、以下说法:两点确定一条直线;两点之间直线最短;若,则;若a,b互为相反数,则a,b的商必定等于其中正确的是_(请填序号)2、若关于x的分式方程有增根,则增根为_,m的值为_3、将一个圆分割成三个扇形,它们的圆心角度数比为,那么最大扇形的圆心角的度数为_4、边长为a、b的长方形,它的周长为14,面积为10,则的值为_5、已知圆锥的底面周长为,母线长为则它的侧面展开图
4、的圆心角为_度三、解答题(5小题,每小题10分,共计50分)1、在数轴上,表示数m与n的点之间的距离可以表示为|mn|例如:在数轴上,表示数3与2的点之间的距离是5|32|,表示数4与1的点之间的距离是3|4(1)|利用上述结论解决如下问题:(1)若|x5|3,求x的值;(2)点A、B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|ab|6(ba),点C表示的数为2,若A、B、C三点中的某一个点是另两个点组成的线段的中点,求a、b的值2、已知:二次函数yx21(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象3、解方程:4、如图,一高尔夫球从山坡下的点处打出一球,
5、球向山坡上的球洞点处飞去,球的飞行路线为抛物线如果不考虑空气阻力,当球达到最大高度时,球移动的水平距离为已知山坡与水平方向的夹角为30,、两点间的距离为(1)建立适当的直角坐标系,求这个球的飞行路线所在抛物线的函数表达式(2)这一杆能否把高尔夫球从点处直接打入点处球洞?5、某公司生产A型活动板房成本是每个425元图表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4米,宽AB=3米,抛物线的最高点E到BC的距离为4米(1)按如图所示的直角坐标系,抛物线可以用表示直接写出抛物线的函数表达式 线 封 密 内 号学级年名姓 线 封 密 外 (2)现将A型活动板房改造为B型活动板房如图
6、,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户每平方米的成本为50元已知GM=2米,直接写出:每个B型活动板房的成本是 元(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场信息,这样的B型活动板房公司每月最多能生产个,若以单价元销售B型活动板房,每月能售出个;若单价每降低元,每月能多售出个这样的B型活动板房不考虑其他因素,公司将销售单价(元)定为多少时,每月销售B型活动板房所获利润(元)最大?最大利润是多少?-参考答案-一、单选题1、D【分析】括号里通分化简,然后根据除以一个数等于乘以这个数的倒数计算即可
7、【详解】解:原式,故选:D【点睛】本题考查了分式的混合运算,熟知运算法则是解题的关键2、B【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案【详解】解:-18-2=-20,-18+2=-16,温度范围:-20至-16,故选:B【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度3、D【分析】根据相反数、绝对值、倒数的定义进行解答即可【详解】解:,-2的相反数是2,-2的绝对值是2,-2的倒数是-,所以以上答案都不对.故选D【点睛】本题考查相反数、绝对值、倒数,掌握相反数、绝对值、倒数的定义是解题的关键4、C【分析】延长至点E,使,连
8、接,证明,可得,然后运用三角形三边关系可得结果【详解】如图,延长至点E,使,连接 线 封 密 内 号学级年名姓 线 封 密 外 为的边上的中线,在和中,在中,即,故选:C【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,根据中点倍长法构造全等三角形是解题的关键5、A【分析】先分别计算出点A与点C之间的距离为10,点B与点C之间的距离为8.5,再分别计算出所用的时间【详解】解:点A与点C之间的距离为:,点B与点C之间的距离为:,点A以每秒2个单位长度向点C运动,所用时间为(秒);同时点B以每秒个单位长度向点C运动,所用时间为(秒);故先到达点C的点为点A,故选:A【点睛】本题考查了数轴,
9、解决本题的关键是计算出点A与点C,点B与点C之间的距离6、A【分析】在方程的左右两边同时乘10,即可作出判断【详解】解:去分母得:,故选:A【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键7、C 线 封 密 内 号学级年名姓 线 封 密 外 【详解】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分【详解】A、分式的分子与分母中的系数34和85有公因式17,可以约分,故A错误;B、=yx,故B错误;C、分子分母没有公因式,是最简分式,故C正确;D、=,故
10、D错误,故选C【点睛】本题考查了最简分式,熟练掌握最简分式的概念是解题的关键.分式的化简过程,首先要把分子分母分解因式,然后进行约分8、D【分析】通过观察算式可以发现规律:左边是指数从1开始以2为底数的乘方,右边是个位数字,以2,4,8,6交替出现,也就是4个数为一个周期3,所以的个位数字应该与的个位数字相同,所以的个位数字是8【详解】解:通过观察算式可以发现规律:左边是指数从1开始以2为底数的乘方,右边是个位数字,以2,4,8,6交替出现,也就是4个数为一个周期3,所以的个位数字应该与的个位数字相同,所以的个位数字是8故选D【点睛】本题主要考查了数字类的规律问题,解题的关键在于能够准确找到相
11、关规律9、C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项不符合题意;C是轴对称图形,也是中心对称图形,故本选项符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合10、C【分析】根据有理数的减法法则可判断;先算乘法、再算减法,可判断;根据有理数的乘除运算法则可判断;根据有理数的混合运算法则可判
12、断,进而可得答案.【详解】解:,所以运算错误;,所以运算正确;43()=4()=,所以运算错误;122(1)2=121=3,所以运算错误综上,运算错误的共有3个,故选:C.【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键.二、填空题1、【分析】分别利用直线的性质以及线段的性质和相反数、绝对值的性质分别分析得出答案【详解】两点确定一条直线,正确;两点之间直线最短,错误,应为两点之间线段最短;若,则,故错误;若a,b互为相反数,则a,b的商等于(a,b不等于0),故错误故答案为:.【点睛】此题主要考查了直线的性
13、质以及线段的性质和相反数、绝对值,正确掌握相关定义是解题关键2、 1 【分析】分式方程的增根是使得最简公分母为0的未知数的取值,根据分式方程的增根定义即可求解.【详解】解:原方程有增根,最简公分母,解得,即增根为2,方程两边同乘,得,化简,得,将代入,得故答案为:【点睛】本题主要考查分式方程增根的定义,解决本题的关键是要熟练掌握分式方程的解法和增根的定义.3、【分析】根据它们的圆心角的度数和为周角,则利用它们所占的百分比计算它们的度数【详解】最大扇形的圆心角的度数=360=200故答案为200【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,
14、那么它们所对应的其余各组量都分别相等4、70【分析】直接利用长方形的周长和面积公式结合提取公因式法分解因式计算即可【详解】解:依题意:2a+2b=14,ab=10,则a+b=7a2b+ab2=ab(a+b)=70;故答案为:70【点睛】此题主要考查了提取公因式法分解因式,正确得出a+b和ab的值是解题关键5、【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据弧长=圆锥底面周长=4,弧长=计算【详解】由题意知:弧长=圆锥底面周长=4cm,=4,解得:n=240故答案为240【点睛】本题考查了的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系三、解答题1、(1)x8或x2(2)a5,b1
15、或a4,b10或a14,b8【分析】(1)根据两点间的距离公式和绝对值的意义,可得答案;(2)分类讨论:C是AB的中点,当点A为线段BC的中点,当点B为线段AC的中点,根据线段中点的性质,可得答案(1)解:因为|x5|3,所以x53或x53,解得x8或x2;(2)因为|ab|6(ba),所以在数轴上,点B与点A之间的距离为6,且点B在点A的右侧当点C为线段AB的中点时,如图1所示,点C表示的数为2,a235,b2+31当点A为线段BC的中点时,如图2所示,ACAB6点C表示的数为2,a2+64,ba+610当点B为线段AC的中点时,如图3所示,BCAB6点C表示的数为2,b268,ab614
16、线 封 密 内 号学级年名姓 线 封 密 外 综上,a5,b1或a4,b10或a14,b8【点睛】本题考查了数轴上两点间的距离,线段的中点,以及一元一次方程的应用,注意数轴上到一点距离相等的点有两个,分类讨论是解(2)题关键2、(1)抛物线的开口方向向上,对称轴为y轴,顶点坐标为(0,1)(2)图像见解析【分析】(1)根据二次函数y=a(x-h)2+k,当a0时开口向上;顶点式可直接求得其顶点坐标为(h,k)及对称轴x=h;(2)可分别求得抛物线顶点坐标以及抛物线与x轴、y轴的交点坐标,利用描点法可画出函数图象(1)解:(1)二次函数yx21,抛物线的开口方向向上,顶点坐标为(0,1),对称轴
17、为y轴;(2)解:在yx21中,令y0可得x21=0解得x1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);令x0可得y1,所以抛物线与y轴的交点坐标为(0,-1);又顶点坐标为(0,1),对称轴为y轴,再求出关于对称轴对称的两个点,将上述点列表如下:x-2-1012yx2130-103描点可画出其图象如图所示:【点睛】本题考察了二次函数的开口方向、对称轴以及顶点坐标以及二次函数抛物线的画法解题的关键是把二次函数的一般式化为顶点式描点画图的时候找到关键的几个点,如:与x轴的交点与y轴的交点以及顶点的坐标3、【分析】方程两边同时乘以12,去分母后,依次计算即可【详解】,去分母,得3(
18、2x+1)-2(x-3)=12,去括号,得 线 封 密 内 号学级年名姓 线 封 密 外 6x+3-2x+6=12,移项,得6x-2x=12-3-6,合并同类项,得4x=3,系数化为1,得x=【点睛】本题考查了一元一次方程的解法,熟练掌握五步骤解一元一次方程是解题的关键4、(1)坐标系见解析,y=x2+x(2)不能【分析】(1)首先根据题意建立平面直角坐标系,分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式;(2)求出点A的坐标,把点A的横坐标x=12代入抛物线解析式,看函数值与点A的纵坐标是否相符(1)建立平面直角坐标系如图,顶点B的坐标是(9,1
19、2),设抛物线的解析式为y=a(x-9)2+12,点O的坐标是(0,0)把点O的坐标代入得:0=a(0-9)2+12,解得a=,抛物线的解析式为y=(x-9)2+12即y=x2+x;(2)在RtAOC中,AOC=30,OA=8,AC=OAsin30=8=4,OC=OAcos30=8=12点A的坐标为(12,4), 线 封 密 内 号学级年名姓 线 封 密 外 当x=12时,y=,这一杆不能把高尔夫球从O点直接打入球洞A点【点睛】本题考查了二次函数解析式的确定方法,及点的坐标与函数解析式的关系5、(1)(2)500(3)公司将销售单价n定为620元时,每月销售B型活动板房所获利润w最大,最大利润
20、是19200元【分析】(1)根据题意,待定系数法求解析式即可;(2)根据(1)的结论写出的坐标,进而求得,根据矩形的面积公式计算,进而求得每个B型活动板房的成本;(3)根据利润等于单个利润乘以销售量,进而根据二次函数的性质求得最值即可(1)长方形的长,宽,抛物线的最高点到的距离为,由题意知抛物线的函数表达式为,把点代入,得,该抛物线的函数表达式为故答案为:(2),当时,每个B型活动板房的成本是(元)故答案为:500(3)根据题意,得, 每月最多能生产个B型活动板房,解得, ,时,随的增大而减小, 线 封 密 内 号学级年名姓 线 封 密 外 当时,有最大值,且最大值为 答:公司将销售单价定为元时,每月销售B型活动板房所获利润最大,最大利润是元【点睛】本题考查了二次函数的应用,二次函数的性质,掌握二次函数的性质是解题的关键