精品试题沪教版七年级数学第二学期第十四章三角形综合训练试题(无超纲).docx

上传人:可****阿 文档编号:30765155 上传时间:2022-08-06 格式:DOCX 页数:32 大小:964.54KB
返回 下载 相关 举报
精品试题沪教版七年级数学第二学期第十四章三角形综合训练试题(无超纲).docx_第1页
第1页 / 共32页
精品试题沪教版七年级数学第二学期第十四章三角形综合训练试题(无超纲).docx_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《精品试题沪教版七年级数学第二学期第十四章三角形综合训练试题(无超纲).docx》由会员分享,可在线阅读,更多相关《精品试题沪教版七年级数学第二学期第十四章三角形综合训练试题(无超纲).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D62、如图,是等边三角

2、形,点在边上,则的度数为( )A25B60C90D1003、BP是ABC的平分线,CP是ACB的邻补角的平分线,ABP=20,ACP=50,则P=( )A30B40C50D604、下列各条件中,不能作出唯一的的是( )A,B,C,D,5、如图,ABCDEF,点B、E、C、F在同一直线上,若BC7,EC4,则CF的长是( )A2B3C4D76、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)()若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )ABCD7、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D198、下列三角形与

3、下图全等的三角形是( )ABCD9、如图,ABC中,ABC45,CDAB于D,BE平分ABC,且BEAC于E,与CD相交于点F,DHBC于H,交BE于G,下列结论中正确的是( )BCD为等腰三角形;BFAC;CEBF;BHCEABCD10、有两边相等的三角形的两边长为,则它的周长为( )ABCD或第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知,请添加一个条件,使得,则添加的条件可以为_(只填写一个即可)2、如图,点,在直线上,且,且,过,分别作,若,则的面积是_3、如图,在等边ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点若AD=6,则EP+

4、CP的最小值为_4、如图,ADBC,1B,C=65,BAC_5、如图,在AB1C1中,AC1B1C1,C120,在B1C1上取一点C2,延长AB1到点B2,使得B1B2B1C2,在B2C2上取一点C3,延长AB2到点B3,使得B2B3B2C3,在B3C3上取一点C4,延长AB3到点B4,使得B3B4B3C4,按此操作进行下去,那么第2个三角形的内角AB2C2_;第n个三角形的内角ABnCn_三、解答题(10小题,每小题5分,共计50分)1、如图,已知点E、C在线段BF上,求证:ABCDEF2、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,ABU+CDV180(

5、1)如图1,求证:ABCD;(2)如图2,BEDF,MEBABE+5,FDR35,求MEB的度数;(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MGEN,连接ME,GMEGEM,EBD2NEG,EB平分DEN,MHUV于点H,若EDCCDB,求GMH的度数3、如图,是的角平分线,于点(1)用尺规完成以下基本作图:过点作于点,连接交于点(不写作法,保留作图痕迹)(2)在(1)中所作的图形中,求证:4、如图,点D,E在ABC的边BC上,ABAC,ADAE,求证:BDCE5、如图,灯塔B在灯塔A的正东方向,且灯塔C在灯塔A的北偏东20方向,灯塔C在灯塔B的北偏西50方向(1)

6、求的度数;(2)一轮船从B地出发向北偏西50方向匀速行驶,5h后到达C地,求轮船的速度6、已知:如图,在ABC中,AB3,AC5(1)直接写出BC的取值范围是 (2)若点D是BC边上的一点,BAC85,ADC140,BADB,求C7、在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90,则BCE= 度;(2)设,如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点在直线BC上(线段BC之外)移动,则,之间有怎样的数量关系?请直接写出你的结论

7、8、如图,ABAD,ACAE,BCDE,点E在BC上(1)求证:EACBAD;(2)若EAC42,求DEB的度数9、阅读下面材料:活动1利用折纸作角平分线画图:在透明纸片上画出(如图1-);折纸:让的两边QP与QR重合,得到折痕QH(如图1-);获得结论:展开纸片,QH就是的平分线(如图1-)活动2利用折纸求角如图2,纸片上的长方形ABCD,直线EF与边AB,CD分别相交于点E,F将对折,点A落在直线EF上的点处,折痕EN与AD的交点为N;将对折,点B落在直线EF上的点处,折痕EM与BC的交点为M这时的度数可知,而且图中存在互余或者互补的角解答问题:(1)求的度数;(2)图2中,用数字所表示的

8、角,哪些与互为余角?写出的一个补角解:(1)利用活动1可知,EN是的平分线,EM是的平分线,所以 , 由题意可知,是平角所以( ) (2)图2中,用数字所表示的角,所有与互余的角是: ;的一个补角是 10、如图,在ABC中,CE平分ACB交AB于点E,AD是ABC边BC上的高,AD与CE相交于点F,且ACB80,求AFE的度数-参考答案-一、单选题1、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键2、D【分析】由等

9、边三角形的性质及三角形外角定理即可求得结果【详解】是等边三角形C=60ADB=DBC+C=40+60=100故选:D【点睛】本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键3、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出P的度数【详解】BP是ABC中ABC的平分线,CP是ACB的外角的平分线,ABP=CBP=20,ACP=MCP=50,PCM是BCP的外角,P=PCMCBP=5020=30,故选:A【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和4、B【分析】根据三角形全等的判定及

10、三角形三边关系即可得出结果【详解】解:A、,不能组成三角形;B、根据不可以确定选项中条件能作出唯一三角形;C、根据可以确定选项中条件能作出唯一三角形;D、根据可以确定选项中条件能作出唯一三角形;故答案为:B【点睛】本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解5、B【分析】根据全等三角形的性质可得,根据即可求得答案【详解】解:ABCDEF,点B、E、C、F在同一直线上,BC7,EC4,故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键6、B【分析】过点作轴于,由“”可证,可得,即可求解【详解】解:如图,过点作轴于,点,是等腰直角三角

11、形,且,在和中,故选:B【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形7、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键8、C【分析】根据已知的三角形求第三个内角的度数,由全等

12、三角形的判定定理即可得出答案【详解】由题可知,第三个内角的度数为,A.只有两边,故不能判断三角形全等,故此选项错误;B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误故选:C【点睛】本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键9、C【分析】根据ABC45,CDAB可得出BDCD;利用AAS判定RtDFBRtDAC,从而得出BFAC;再利用AAS判定RtBEARtBEC,即可得到CEBF;由CEBF,BHBC,在三角形BCF中,比较BF、BC的长度即可得

13、到CEBH【详解】解:CDAB,ABC45,BCD是等腰直角三角形BDCD,故正确;在RtDFB和RtDAC中,DBF90BFD,DCA90EFC,且BFDEFC,DBFDCA又BDFCDA90,BDCD,DFBDACBFAC,故正确;在RtBEA和RtBEC中BE平分ABC,ABECBE又BEBE,BEABEC90,RtBEARtBECCEACBF,故正确;CEACBF,BHBC,在BCF中,CBEABC22.5,DCBABC45,BFC112.5,BFBC,CEBH,故错误;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL在复杂的图

14、形中有45的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点10、D【分析】有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为综上所述,该等腰三角形的周长是或故选:D【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论二、填空题1、或【分析】根据全等三角形的判定方法即可解决问题【详解

15、】解:由题意,根据,可以添加,使得,根据,可以添加,使得故答案为:或【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、角角边、边边边是解题的关键2、15【分析】根据AAS证明EFAAGB,BGCCHD,再根据全等三角形的性质以及三角形的面积公式求解即可【详解】解:(1)EFFG,BGFG,EFA=AGB=90,AEF+EAF=90,又AEAB,即EAB=90,BAG+EAF=90,AEF=BAG,在AEC和CDB中,EFAAGB(AAS);同理可证BGCCHD(AAS),AG=EF=6,CG=DH=4,SABC=ACBG=(AG+GC)BG=(6+4)3=15

16、故答案为:15【点睛】本题考查了三角形全等的性质和判定,解题的关键是灵活运用所学知识解决问题3、6【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解【详解】解:作点E关于AD的对称点F,连接CF,ABC是等边三角形,AD是BC边上的中垂线,点E关于AD的对应点为点F,CF就是EP+CP的最小值ABC是等边三角形,E是AC边的中点,F是AB的中点,CF=AD=6,即EP+CP的最小值为6,故答案为6【点睛】本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键4、70【分析】先根据ADBC可知ADBADC90,再根据直角三角

17、形的性质求出1与DAC的度数,由BAC1+DAC即可得出结论【详解】ADBC,ADBADC90,DAC906525,1B45,BAC1+DAC45+2570【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180是解答此题的关键5、40 【分析】先根据等腰三角形的性质求出C1B1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出B1B2C2,C3B3B2及C4B3B2的度数,找出规律即可得出ABnCn的度数【详解】解:AB1C1中,AC1B1C1,C120,C1B1A ,B1B2B1C2,C1B1A是B1B2C2的外角,B1B2C2 ;同理可得,C3B3B220,C4B3B2

18、10,ABnCn故答案为:40,【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出B1B2C2,C3B3B2及C4B3B2的度数,找出规律是解答此题的关键三、解答题1、见解析【分析】由平行线的性质可证明再由,可推出最后即可利用“ASA”直接证明【详解】证明:,即在和中,【点睛】本题考查三角形全等的判定,平行线的性质,线段的和与差掌握三角形全等的判定条件是解答本题的关键2、(1)见详解;(2)MEB40,(3)GMH=80【分析】(1)根据等角的补角性质得出ABD=CDV,根据同位角相等两直线平行可得ABCD;(2)根据ABCD;利用内错角相等得出ABD=RDB,根据BEDF,

19、得出EBD=FDB,利用等量减等量差相等得出ABE=FDR,根据FDR35,可得ABE=FDR=35即可;(3)设ME交AB于S,根据MGEN,得出NES=GMS=GES,设NES=y,可得NEG=NES+GES=2NES=2y,根据EBD2NEG,得出EBD =4NES=4y,根据EDCCDB,设EDC=x,得出CDB=7x,根据ABCD,得出GBE+EBD+CDB=180,可得35+4y+7x=180根据三角形内角和BDE=BDC-EDC=7x-x=6x,BED=180-EBD-EDB=180-4y-6x,利用EB平分DEN,得出y+40=180-4y-6x,解方程组,解得,可证MEUV,

20、根据MHUV,可求SMH=90,SMG=NES=10即可【详解】(1)证明:ABU+ABD=180,ABU+CDV180ABU=180-ABD,CDV180-ABU,ABD=CDV,ABCD;(2)解:ABCD;ABD=RDB,ABE+EBD=FDB+FDR,BEDF,EBD=FDB,ABE=FDR,FDR35,ABE=FDR=35,MEBABE+5=35+5=40,(3)解:设ME交AB于S,MGEN,NES=GMS=GES,设NES=y,EBD2NEGNEG=NES+GES=2NES=2y,EBD =4NES=4y,EDCCDB,设EDC=xCDB=7x,ABCD,ABD+CDB=180,

21、即GBE+EBD+CDB=180,35+4y+7x=180,BDE=BDC-EDC=7x-x=6x,BED=180-EBD-EDB=180-4y-6x,EB平分DEN,NEB=BED,NEB=NES+SEB=y+40,y+40=180-4y-6x,解得,EBD=4y=40=MEB,MEUV,MHUV,MHME,SMH=90,SMG=NES=10,GMH=90-SMG=90-10=80【点睛】本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键3、(1)见解析;(2

22、)见解析【分析】(1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;(2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题【详解】解:(1)如图,点F、G即为所求作的点;(2)是的角平分线,【点睛】本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键4、见解析【分析】过A作AFBC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案【详解】证明:如图,过A作AFBC于F,AB=AC,AD=AE,BF=CF,DF=E

23、F,BF-DF=CF-EF,BD=CE【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合5、(1)70;(2)15km/h【分析】(1)根据题意得BAC=70,ABC=40,根据三角形的内角和定理即可求得ACB;(2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程时间求解即可【详解】解:(1)根据题意得BAC=70,ABC=40,ACB=180BACABC=1807040=70;(2)BAC=ACB=70,BC=AB=75km,轮船的速度为755=15(km/h)【点睛】本题考查方位角、等腰三角形的判定、三角形的内角和定理

24、,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键6、(1)2BC8;(2)25【分析】(1)根据三角形三边关系解答即可;(2)根据三角形外角性质和三角形内角和解答即可【详解】解:(1)AC-ABBCAC+AB,AB3,AC52BC8,故答案为:2BC8(2)ADC是ABD的外角ADCB+BAD140BBADBB+BAC+C180C180BBAC即C180708525【点睛】本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出B的度数是解此题的关键7、(1)90;(2),见解析;或【分析】(1)由等腰直角三角形的性质可得ABCACB45,由“

25、SAS”可证BADCAE,可得ABCACE45,可求BCE的度数;(2)由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论;分两种情况,由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论【详解】解:(1),AB=AC,AD=AE, 在和中,(2)或 理由:,即在和中, ,如图:,即在和中, ,综上所述:点D在直线BC上移动,+180或【点睛】本题主要考查全等三角形的判定及性质,等腰三角形的性质和三角形内角和定理,掌握全等三角形的判定方法及性质是关键8、(1)见解析;(2)42【分析】(1)利用边边边证得ABCADE,可得BACDAE,即可求证

26、;(2)根据等腰三角形的性质,可得AECC69,再由ABCADE,可得AEDC69, 即可求解【详解】(1)证明:ABAD,ACAE,BCDE,ABCADE BACDAE BACBAEDAEBAE即EACBAD; (2)解:ACAE,EAC=42,AECC (180EAC) (18042)69ABCADE,AEDC69, DEB180AEDC180696942【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键9、(1),90;(2)1、2;CME或NEB【分析】【详解】解:(1)折叠EN是的平分线,EM是的平分线

27、,NEA=NEA=,BEM=BEM=,是平角NEM=NEA+BEM=+,故答案为:,90;(2)1=2,AEN=3,NEM=90,AEN+1=NEM=90,互为余角为1和2,故答案为:1、2;AEN=3,3+NEB=180,AEN的补角为NEBB=90,2+EMB=90,3=EMB,CME+EMB=180,3+CME=180,AEN的补角为CME, AEN的补角为CME或NEB故答案为CME或NEB【点睛】本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键10、AFE=50【分析】根据CE平分ACB,ACB80,得出ECB=,根据高线性质得出ADC=90,根据三角形内角和得出DFC=180-ADC-ECB=180-90-40=50,利用对顶角性质得出AFE=DFC=50即可【详解】解:CE平分ACB,ACB80,ECB=,AD是ABC边BC上的高,ADBC,ADC=90,DFC=180-ADC-ECB=180-90-40=50,AFE=DFC=50【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁