精品试卷沪科版九年级数学下册第24章圆专项训练试题(含答案及详细解析).docx

上传人:可****阿 文档编号:30764569 上传时间:2022-08-06 格式:DOCX 页数:28 大小:750.13KB
返回 下载 相关 举报
精品试卷沪科版九年级数学下册第24章圆专项训练试题(含答案及详细解析).docx_第1页
第1页 / 共28页
精品试卷沪科版九年级数学下册第24章圆专项训练试题(含答案及详细解析).docx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《精品试卷沪科版九年级数学下册第24章圆专项训练试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《精品试卷沪科版九年级数学下册第24章圆专项训练试题(含答案及详细解析).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点P(3,1)关于原点对称的点的坐标是( )A(3,1)B(3,1)C(3,1)D(3,1)2、如图,PA,PB是O的

2、切线,A,B是切点,点C为O上一点,若ACB70,则P的度数为( ) A70B50C20D403、下列四个图案中,是中心对称图形但不是轴对称图形的是( )ABCD4、如图,点A、B、C在上,则的度数是( )A100B50C40D255、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm6、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定7、如图,是的直径,弦,垂足为,若,则( )A5B8C9D108、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆

3、形螺帽的半径是()A1cmB2cmC2cmD4cm9、在圆内接四边形ABCD中,A、B、C的度数之比为2:4:7,则B的度数为( )A140B100C80D4010、如图,PA,PB是O的切线,A,B为切点,PA4,则PB的长度为( )A3B4C5D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_2、斛是中国古代的一种量器.据汉书 .律历志记载:“斛底,方而圜(hun)其外,旁有庣(tio)焉”意思是说

4、:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为_尺3、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为_(结果保留)4、两直角边分别为6、8,那么的内接圆的半径为_5、点(2,-3)关于原点的对称点的坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD是正方形ABE是等边三角形,M为对角线 BD(不含B,D点)上任意一点,将线段BM绕点B逆时针旋转60得到B

5、N,连接 EN,AM、CM请判断线段 AM 和线段 EN 的数量关系,并说明理由2、在中,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90得到线段AF,连接BF,与直线AD交于点G(1)如图,当点E在线段CD上时,依题意补全图形,并直接写出BC与CF的位置关系;求证:点G为BF的中点(2)直接写出AE,BE,AG之间的数量关系3、如图,在直角坐标系中,将ABC绕点A顺时针旋转90(1)画出旋转后的AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转过程中扫过的面积4、如图,在平面直角坐标系中,有抛物线,已知OA =O

6、C =3OB,动点P在过A,B,C三点的抛物线上(1)求抛物线的解析式;(2)求过A,B,C三点的圆的半径;(3)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;5、问题:如图,是的直径,点在内,请仅用无刻度的直尺,作出中边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程作法:如图,延长交于点,延长交于点;分别连接,并延长相交于点;连接并延长交于点所以线段即为中边上的高(1)根据小芸的作法,补全图形;(2)完成下面的证明证明:是的直径,点,在上,_(_)(填推理的依据),_是的两条高线,所在直线交于点

7、,直线也是的高所在直线是中边上的高-参考答案-一、单选题1、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1)故选:C【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形2、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90,ACB=70,AO

8、B=2P=140,P=360-OAP-OBP-AOB=40故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用3、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重

9、合4、C【分析】先根据圆周角定理求出AOB的度数,再由等腰三角形的性质即可得出结论【详解】ACB=50,AOB=100,OA=OB,OAB=OBA= 40,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半5、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作OCAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=

10、2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键6、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得C 与AB的位置关系【详解】解:连接,,点O为AB中点CO为C的半径,是的切线,C 与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键7、C【分析】连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得【详解】解:如图,连接,是的直径,弦,设的半径为,则在中,即解得即故选

11、C【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键8、D【分析】根据圆内接正六边形的性质可得AOB是正三角形,由面积公式可求出半径【详解】解:如图,由圆内接正六边形的性质可得AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OAsinOAB=, 圆O的内接正六边形的面积为(cm2), AOB的面积为(cm2), 即, , 解得r=4, 故选:D【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键9、C【分析】,进而求解的值【详解】解:由题意知故选C【点睛】本题考查了圆内接四边形中对角互补解题的关键在于根据角度之间的数

12、量关系求解10、B【分析】由切线的性质可推出,再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PA,PB是O的切线,A,B为切点,在和中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质熟练掌握切线的性质是解答本题的关键二、填空题1、#【分析】延长AG交CD于M,如图1,可证ADGDGC可得GCD=DAM,再证ADMDFC可得DF=DM=AE,可证ABEADM,可得H是以AB为直径的圆上一点,取AB中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值【详解】解:延长AG交CD于M,如图1,ABCD是正方形,AD=CD=AB,BAD=ADC=9

13、0,ADB=BDC,AD=CD,ADB=BDC,DG=DG,ADGDGC,DAM=DCF且AD=CD,ADC=ADC,ADMCDF,FD=DM且AE=DF,AE=DM且AB=AD,ADM=BAD=90,ABEDAM,DAM=ABE,DAM+BAM=90,BAM+ABE=90,即AHB=90,点H是以AB为直径的圆上一点如图2,取AB中点O,连接OD,OH,AB=AD=2,O是AB中点,AO=1=OH,在RtAOD中,OD=,DHOD-OH,DH-1,DH的最小值为-1,故答案为:-1【点睛】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点2、【分析】

14、如图,根据四边形CDEF为正方形,可得D=90,CD=DE,从而得到CE是直径,ECD=45,然后利用勾股定理,即可求解【详解】解:如图, 四边形CDEF为正方形,D=90,CD=DE,CE是直径,ECD=45,根据题意得:AB=2.5, , , ,即此斛底面的正方形的边长为 尺故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键3、【分析】先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可【详解】过C作CDOA于D一次函数的图象与x轴交于点A,与y轴交于点B,当时,B点坐标为(0,1)当时,A点坐标为作的外接

15、圆,线段AB中点C的坐标为,三角形BOC是等边三角形C的坐标为故答案为:【点睛】本题主要考查了一次函数的综合运用,求扇形面积用已知点的坐标表示相应的线段是解题的关键4、5【分析】直角三角形外接圆的直径是斜边的长【详解】解:由勾股定理得:AB=10,ACB=90,AB是O的直径,这个三角形的外接圆直径是10,这个三角形的外接圆半径长为5,故答案为:5【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等5、 (-2,3)【分析】根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解【详解】点(2,

16、-3)关于原点的对称点的坐标是(-2,3) 故答案为:(-2,3)【点睛】本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系三、解答题1、AM=EN,理由见解析【分析】根据旋转性质和等边三角形的性质可证得ABM=EBN,BM=BN,AB=BE,根据全等三角形的判定证明ABMEBN即可得出结论【详解】解:AM=EN,理由为:ABE是等边三角形,AB=BE,ABE=60,即EBN=ABN=60,线段BM绕点B逆时针旋转60得到BN,BM=BN,MBN=60,即ABM+ABN=60,ABM=EBN,在ABM和EBN中,ABMEBN(SAS),AM=EN【点睛】本题考查等

17、边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键2、(1)BCCF;证明见详解;见详解;(2)2AE2=4AG2+BE2证明见详解【分析】(1)如图所示,BCCF根据将线段AE逆时针旋转90得到线段AF,得出AE=AF,EAF=90,可证BAECAF(SAS),得出ABE=ACF=45,可得ECF=ACB+ACF=45+45=90即可;根据ADBC,BCCF可得ADCF,可证BDGBCF,可得,得出即可;(2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分BAC,可得BAD=CAD=,可证BAGBHF,得出HF

18、=2AG,再证AECAFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可【详解】解:(1)如图所示,BCCF将线段AE逆时针旋转90得到线段AF,AE=AF,EAF=90,EAC+CAF=90,BAE+EAC=90,ABC=ACB=45,BAE=CAF,在BAE和CAF中,BAECAF(SAS),ABE=ACF=45,ECF=ACB+ACF=45+45=90,BCCF;ADBC,BCCFADCF,BDG=BCF=90,BGD=BFC,BDGBCF,ADBC,BD=DC=,BG=GF;(2)2AE2=4AG2+BE2延长BA交CF延长线于H,ADBC,AB=AC,AD平分BAC,B

19、AD=CAD=,BG=GF,AGHF,BAG=H=45,AGB=HFB,BAGBHF,HF=2AG,ACE=45,ACE =H,EAC+CAF=90,CAF+FAH=90,EAC=FAH,在AEC和AFH中,AECAFH(AAS),EC=FH=2AG,在RtAEF中,根据勾股定理,在RtECF中,即【点睛】本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键3、(1)作图见解析,、;(2)【分析】(1)将绕点A顺时针旋转90得,根据点A、B、C坐标,即

20、可确定出点、的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案【详解】(1)将绕点A顺时针旋转90得如图所示:、;(2)由图可知:,线段AB在旋转过程中扫过的面积为【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键4、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5)【分析】(1)3=OC=OA=3OB,故点A、B、C的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;

21、(3)分两种情况讨论,利用等腰直角三角形的性质,即可求解【详解】解:(1)令x=0,则y=3,则点A的坐标为(3,0),根据题意得:OC=3=OA=3OB,故点B、C的坐标分别为:(-1,0)、(3,0),则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),把(3,0)代入得-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2+2x+3;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),则圆的半径为:;(3)过点A、C分别作直线AC的垂线,交抛物线分别为P、P1,设点P(x,-x2+2x+

22、3),过点P作PQ轴于点Q,OA =OC,PAC=90,ACO=OAC=45,PAC=90,PAQ=45,PAQ 是等腰直角三角形,PQ=AQ=x,AQ+AO=x+3=-x2+2x+3,解得:(舍去),点P(1,4);设点P1(m,-m2+2m+3),过点P1作P1D轴于点D,同理得P1CD是等腰直角三角形,且点P1在第三象限,即m0,P1D=CD=m2-2m-3,DO=-m,DO+OC= P1D,即-m+3= m2-2m-3,解得:(舍去),点P(-2,-5);综上,点P(1,4)或(-2,-5)【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏5、(1)见详解;(2)90,直径所对的圆周角是直角,BD【分析】(1)根据作图步骤作出图形即可;(2)根据题意填空,即可求解【详解】解:(1)如图,CH为ABC中AB边上的高;(2)证明:是的直径,点,在上,_90_(_直径所对的圆周角是直角_)(填推理的依据),_BD_是的两条高线,所在直线交于点,直线也是的高所在直线是中边上的高故答案为:90,直径所对的圆周角是直角,BD【点睛】本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁