精品试卷沪科版九年级数学下册第24章圆专项测试试题(含答案及详细解析).docx

上传人:知****量 文档编号:28199260 上传时间:2022-07-26 格式:DOCX 页数:29 大小:967.12KB
返回 下载 相关 举报
精品试卷沪科版九年级数学下册第24章圆专项测试试题(含答案及详细解析).docx_第1页
第1页 / 共29页
精品试卷沪科版九年级数学下册第24章圆专项测试试题(含答案及详细解析).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《精品试卷沪科版九年级数学下册第24章圆专项测试试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《精品试卷沪科版九年级数学下册第24章圆专项测试试题(含答案及详细解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC外接于O,A30,BC3,则O的半径长为( )A3BCD2、如图,在RtABC中,ACB90,A30,BC

2、2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )A3B1CD3、若的圆心角所对的弧长是,则此弧所在圆的半径为( )A1B2C3D44、如图,点A、B、C在上,则的度数是( )A100B50C40D255、如图,点P是等边三角形ABC内一点,且PA3,PB4,PC5,则APB的度数是( )A90B100C120D1506、如图图案中,不是中心对称图形的是( )ABCD7、下列图形中,是中心对称图形的是( )ABCD8、如图,点A,B,C均在O上,连接OA,OB,AC,BC,如果OAOB,那么C的度数为( )A22.5B45C

3、90D67.59、点P(3,1)关于原点对称的点的坐标是( )A(3,1)B(3,1)C(3,1)D(3,1)10、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cmA3B6C12D18第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:O(纸片),其半径为求作:一个正方形,使其面积等于O的面积作法:如图1,取O的直径,作射线,过点作的垂线;

4、如图2,以点为圆心,为半径画弧交直线于点;将纸片O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;取的中点,以点为圆心,为半径画半圆,交射线于点;以为边作正方形正方形即为所求根据上述作图步骤,完成下列填空:(1)由可知,直线为O的切线,其依据是_(2)由可知,则_,_(用含的代数式表示)(3)连接,在Rt中,根据,可计算得_(用含的代数式表示)由此可得2、若扇形的圆心角为60,半径为2,则该扇形的弧长是_(结果保留)3、如图,点A,B,C在O上,四边形OABC是平行四边形,若对角线AC2,则的长为 _4、如图,在中,分别以、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”当

5、,时,则阴影部分的面积为_5、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,旋转角满足,对图形M与图形N给出如下定义:将图形M绕原点逆时针旋转得到图形P为图形上任意一点,Q为图形N上的任意一点,称PQ长度的最小值为图形M与图形N的“转后距”已知点,点,点(1)当时,记线段OA为图形M画出图形;若点C为图形N,则“转后距”为_;若线段AC为图形N,求“转后距”;(2)已知点,点,记线段AB为图形M,线段PQ为图形N,对任意旋转角,“转后距”大于1,直接写出t的取值范围2、如图,在中,将绕着点A顺

6、时针旋转得到,连接BD,连接CE并延长交BD于点F(1)求的度数;(2)若,且,求DF的长3、在等边中,将线段AB绕点A顺时针旋转得到线段AD(1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F依题意补全图形;用等式表示线段AE,AF,CE之间的数量关系,并证明4、如图,正方形ABCD是半径为R的O内接四边形,R6,求正方形ABCD的边长和边心距5、新定义:如图,已知,在内部画射线OC,得到三个角,分别为、若这三个角中有一个角是另外一个角的2倍,则称射线OC为的“幸运线”(本题中所研究的角都是大于0而小

7、于180的角)(阅读理解)(1)角的平分线_这个角的“幸运线”;(填“是”或“不是”)(初步应用)(2)如图,射线OC为的“幸运线”,则的度数为_;(直接写出答案)(解决问题)(3)如图,已知,射线OM从OA出发,以每秒10的速度绕O点顺时针旋转,同时,射线ON从OB出发,以每秒15的速度绕O点顺时针旋转,设运动的时间为t秒若OM、ON、OB三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t的值(实际运用)(4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与

8、时针恰好重合问小丽帮妈妈取包裹用了多少分钟?-参考答案-一、单选题1、A【分析】分析:连接OA、OB,根据圆周角定理,易知AOB=60;因此ABO是等边三角形,即可求出O的半径【详解】解:连接BO,并延长交O于D,连结DC,A=30,D=A=30,BD为直径,BCD=90,在RtBCD中,BC=3,D=30,BD=2BC=6,OB=3故选A【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30角所对直角三角形性质是解题的关键2、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含

9、30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键3、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r,则周长为2r,120所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键4、C【分析】先根据圆周角定理求出AOB的度数,再由等腰三角形的性质即可得出结论【详解】ACB=50,AOB=100,OA=OB,OA

10、B=OBA= 40,故选:C【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半5、D【分析】将绕点逆时针旋转得,根据旋转的性质得,则为等边三角形,得到,在中,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数【详解】解:为等边三角形,可将绕点逆时针旋转得,如图,连接,为等边三角形,在中,为直角三角形,且,故选:D【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等6、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180,如

11、果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念中心对称图形是要寻找对称中心,旋转180后重合7、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解【详解】

12、A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合8、B【分析】根据同弧所对的圆周角是圆心角的一半即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键9、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1)故选:C

13、【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形10、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算【详解】解:它的侧面展开图的面积2236(cm2)故选:B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长二、填空题1、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3) 【分析】(1)根据切线的定义判断即可(2)由=AC+,计算即可;根据计算即可(3)根据勾股定理,得即为正方形的面积

14、,比较与圆的面积的大小关机即可【详解】解:(1)O的直径,作射线,过点作的垂线,经过半径外端且垂直于这条半径的直线是圆的切线;故答案为:经过半径外端且垂直于这条半径的直线是圆的切线; (2)根据题意,得AC=r,=r,=AC+=r+r,=;,MA=-r=,故答案为:,; (3)如图,连接ME,根据勾股定理,得=; 故答案为:【点睛】本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键2、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算【详解】解:依题意,n=,r=2,扇形的弧长=故答案为:【点睛】本题考查了弧长公式的

15、运用关键是熟悉公式:扇形的弧长=3、【分析】连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可【详解】解:如图所示,连接OB,交AC于点D,四边形OABC为平行四边形,四边形OABC为菱形, ,为等边三角形,在中,设,则,即,解得:或(舍去),的长为:,故答案为:【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键4、【分析】根据阴影部分面积等于以为直径的2

16、 个半圆的面积加上减去为半径的半圆面积即【详解】解:在中,故答案为:【点睛】本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键5、【分析】绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解【详解】解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是故答案为:【点睛】本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键关于原点对称的两个点,横坐标、纵坐标分别互为相反数三、解答题1、(1)OA,图形见详解;2; “转后距”为;(2)t的

17、取值范围为t-5或0t2或【分析】(1)当时,记线段OA为图形M图形M绕原点逆时针旋转90得到图形即OA点C为图形N,求出OC=2最短距离;过点O作OFAC于F,先证OAC为等边三角形,OFAC,根据勾股定理求出OF=即可;(2)点,点,可求tanOPQ=,得出当点P在x轴负半轴时,OPQ=120,当点P在x轴正半轴时,OPQ=60,得出CAB=ABC=30,分三种情况,当,当点P在点B右边,PB=t-4,BD1,列不等式,解得,当点P在点B左边B右边时,EPB=OPQ=60,PB=2PE21即4-t2解得t2,当t=0时,OA=2,AQ=2-1=1,t0,当点P在B左边,PB1,OB=OB=

18、4,t-5即可【详解】解:(1)当时,记线段OA为图形M图形M绕原点逆时针旋转90得到图形即OA;点C为图形N,OC=2为图形M与图形N的“转后距”,“转后距”为2,故答案为2;线段AC为图形N,过点O作OFAC于F,根据勾股定理OA=,AC=,OA=AC=OC=2,OAC为等边三角形,OFAC,AF=CF=1,OF=,“转后距”为;(2)点,点,tanOPQ=,当点P在x轴负半轴时,OPQ=120,当点P在x轴正半轴时,OPQ=60,CB=4-2=2=AC,ACO=60,CAB=ABC=30,分三种情况,当,当点P在点B右边,PB=t-4,BD1,BPsin601,解得;当点P在点B左边B右

19、边时,EPB=OPQ=60,OEB=180-EPB-ABC=180-60-30=90,PB=4-t,PB=2PE21即4-t2,解得t2,当t=0时,点P与原点O重合,OA=2,AQ=2-1=1,t0,0t2;当点P在B左边,PB1,OB=OB=4,t-5;综合t的取值范围为t-5或0t2或【点睛】本题考查图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理,掌握图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理是解题关键2、(1)45;(2

20、)【分析】(1)根据旋转的性质得,通过等量代换及三角形内角和得,根据四点共圆即可求得;(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得【详解】解:(1)由旋转可知:,由三角形内角和定理得,点A,D,F,E共圆(2)连接EB,又,在中,【点睛】本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质3、(1);(2)见解析;AE=AF+CE,证明见解析【分析】(1)根据“线段DA的延长线与线段BC相交于点E”可求解;(2)根据要求画出图形,即可得出结论;在AE上截取AH=AF,先证AFDAHC,再证CHE=HCE,即可得出结果【

21、详解】(1)如图:AD只能在锐角EAF内旋转符合题意故的取值范围为:;(2)补全图形如下:(3)AE=AF+CE,证明:在AE上截取AH=AF,由旋转可得:AB=AD,D=ABF,ABC为等边三角形,AB=AC,BAC=ACB=60,AD=AC,DAF=CAH,AFDAHC,AFD=AHC,D=ACH,AFB=CHE,AFB+ABF=ACH+HCE=60,CHE+D=D+HCE=60,CHE=HCE,CE=HE,AE=AH+HE=AF+CE【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线4、边长为,边心距为【分析】过点O作OEBC,垂足

22、为E,利用圆内接四边形的性质求出BOC=90,OBC=45,然后在RtOBE中,根据勾股定理求出OE、BE即可【详解】解:过点O作OEBC,垂足为E,正方形ABCD是半径为R的O内接四边形,R6,BOC=90,OBC=45,OB=OC=6, BE=OE 在RtOBE中,BEO=90,由勾股定理可得OE2+BE2=OB2,OE2+BE2=36,OE= BE=, BC=2BE=, 即半径为6的圆内接正方形ABCD的边长为,边心距为【点睛】本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等

23、于5、(1)是;(2)16或24或32;(3)2或或;(4)【分析】(1)根据幸运线定义即可求解;(2)分3种情况,根据幸运线定义得到方程求解即可;(3)根据幸运线定义得到方程求解即可;(4)利用时针1分钟走,分针1分钟走,可解答问题【详解】解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)设AOC=x,则BOC=2x,由题意得,x+2x=48,解得x=16,设AOC=x,则BOC=x,由题意得,x+x=48,解得x=24,设AOC=x,则BOC=x,由题意得,x+x=48,解得x=32,故答案为:16或24或32;(3)OB是射线OM与ON的幸运线,则BOM=MON,即50-10t=(50-10t+15t),解得t=2;BOM=MON,即50-10t=(50-10t+15t),解得t=;BOM=MON,即50-10t=(50-10t+15t),解得t=;故t的值是2或或;(4)时针1分钟走,分针1分钟走,设小丽帮妈妈取包裹用了x分钟,则有0.5x+330=6x,解得:x=【点睛】本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力理解“幸运线”的定义是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁