《精品解析2022年人教版八年级数学下册第二十章-数据的分析专项测试练习题.docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版八年级数学下册第二十章-数据的分析专项测试练习题.docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第二十章-数据的分析专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一组数据5,4,6,3,9,则这组数据的中位数是( )A3B4C5D62、小明记录了今年元月份某五天的最
2、低温度(单位:):1,2,0,-1,-2,这五天的最低温度的平均值是( )A1B2C0D-13、如果一组数据的平均数是5,则a的值( )A8B5C4D24、在“支援河南洪灾”捐款活动中,某班级8名同学积极捐出自己的零花钱,奉献爱心,他们捐款的数额分别是(单位:元):60,25,60,30,30,25,65,60这组数据的众数和中位数分别是()A60,30B30,30C25,45D60,455、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )A最高分B中位数C极差D平均分6、小强每天坚持做引体
3、向上的锻炼,下表是他记录的某一周每天做引体向上的个数星期日一二三四五六个数11121013131312对于小强做引体向上的个数,下列说法错误的是( )A平均数是12B众数是13C中位数是12.5D方差是7、2021年正值中国共产党建党100周年,某校开展“敬建党百年,传承红色基因”读书活动为了了解某班开展的学习党史情况,该校随机抽取了9名学生进行调查,他们读书的本数分别是3、2、3、2、5、1、2、5、4,则这组数据的众数是()A2B3C3和5D58、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是(
4、 )甲乙丙丁平均数/m180180185185方差8.23.9753.9A甲B乙C丙D丁9、某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:使用寿命x/h80120160灯泡只数303040这批灯泡的平均使用寿命是( )ABCD10、小明前3次购买的西瓜单价如图所示,若第4次买的西瓜单价是元/千克,且这4个单价的中位数与众数相同,则a 的值为( ) A5B4C3D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若多项式5x217x12可因式分解成(xa)(bxc),其中a、b、c均为整数,则a,b,c的中位数是_2、已知一组数据a,b
5、,c的方差为4,那么数据3a2,3b2,3c2的方差是_3、一组数据5, 4, 2, 4, 5的方差是_4、新兴农场果农随机从甲、乙、丙三个品种的枇杷树中各选10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是_甲乙丙4444421.71.51.75、一组数据,的平均数是,这组数据的方差为_三、解答题(5小题,每小题10分,共计50分)1、姚明在20052006赛季美国职业篮球联赛常规赛中表现优异,下面是他在这个赛季中,分别与“超音速”和“快船”队各四场比赛中的技术统计场次对阵“超音速”对阵“快船”得分
6、篮板失误得分篮板失误第一场2210225172第二场2910229150第三场2414217124第四场261052272(1)姚明在对阵“超音速”和“快船”两队各四场比赛中,平均每场得分是多少?(2)请你从得分的角度分析:姚明在与“超音速”和“快船”队的比赛中,对阵哪一个队的发挥比较稳定?(3)如果规定“综合得分”为:平均每场得分平均每场篮板平均每场失误,且综合得分越高表现越好,那么请你利用这种评价方法,比较姚明在对阵哪一个队时表现更好2、某中学为选拔一名选手参加我市“学宪法 讲宪法”主题演讲比赛,经研究,按表所示的项目和权数对选拔赛参赛选手进行考评下图分别是是小明、小华在选拔赛中的得分表和
7、各项权数分布表:得分表项目选手服装普通话主题演讲技巧小明85分70分80分85分小华90分75分75分80分结合以上信息,回答下列问题:(1)小明在选拔赛中四个项目所得分数的众数是 ,中位数是 ;(2)评分时按统计表中各项权数考评求出演讲技巧项目对应扇形的圆心角的大小如此考评,小明和小华谁更优秀,派出哪位同学代表学校参加比赛呢?3、一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀这次测验中甲乙两组学生成绩分布的折线统计图如下:(1) 请补充完成下面的成绩统计分析表:平均分方差中位数合格率优秀率甲组( )3.76( )9030乙组7.2( )7
8、.58020(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组;但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由4、甲、乙、丙三人的射击成绩如图所示,三人中,谁射击成绩更好?谁更稳定?你是怎么判断的?5、表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩889290869096(1)小明6次成绩的众数是_分;中位数是_分;(2)计算小明平时成绩的方差;(3)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.(注
9、意:平时成绩用四次成绩的平均数;每次考试满分都是100分)-参考答案-一、单选题1、C【解析】【分析】根据中位数的定义即可得出答案【详解】解:将这组数据重新排列为3、4、5、6、9,所以这组数据的中位数为5,故选:【点睛】本题考查了中位数的定义:把一组数据按从小到大(或从大到小)排列,最中间那个数(或最中间两个数的平均数)叫这组数据的中位数2、C【解析】【分析】利用平均数公式计算即可【详解】解:这五天的最低温度的平均值是故选:C【点睛】此题考查平均数公式,熟记公式是解题的关键3、A【解析】【分析】根据平均数的计算公式计算即可;【详解】数据的平均数是5,;故选A【点睛】本题主要考查了平均数的计算
10、,准确计算是解题的关键4、D【解析】【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可【详解】解:60出现了3次,出现的次数最多,则众数是60元;把这组数据从小到大排列为:25,25,30,30,60,60,60,65,则中位数是45(元)故选:D【点睛】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),熟记定义是解题关键5、B【解析】【分析】由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可
11、【详解】解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了故选:B【点睛】本题考查了中位数意义,解题的关键是正确掌握中位数的意义6、C【解析】【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可【详解】解:由题意得它们的平均数为:,故选项A不符合题意;13出现的次数最多,众数是1
12、3,故B选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,中位数为12,故C选项符合题意;方差:,故D选项不符合题意;故选C【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义7、A【解析】【分析】找到这组数据中出现次数最多的数,即可求解.【详解】解:这组数据3,2,3,2,5,1,2,5,4中,出现次数最多的是2分,因此众数是2;故选:A.【点睛】本题考查众数的定义,属于基础题型8、D【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加【详解】解:,从丙和丁中选择一人参加比赛,S丙2S丁2,选
13、择丁参赛,故选:D【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键9、B【解析】【分析】先用每组的组中值表示这组的使用寿命,然后根据加权平均数的定义计算【详解】解:这批灯泡的平均使用寿命是124(h),故选:B【点睛】本题考查了加权平均数:若n个数x1,x2,x3,xn的权分别是w1,w2,w3,wn,则(x1w1x2w2xnwn)(w1w2wn)叫做这n个数的加权平均数10、C【解析】【分析】根据统计图中的数据和题意,可以得到的值,本题得以解决【详解】解:由统计图可知,前3次的中位数是3,第4次买的西瓜单价是元千克,这四个单价的中位数恰好也是众数,故选:C【点睛】本题考查
14、条形统计图、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答二、填空题1、4【解析】【分析】首先利用十字交乘法将5x2+17x-12因式分解,继而求得a,b,c的值【详解】利用十字交乘法将5x2+17x-12因式分解,可得:5x2+17x-12=(x+4)(5x-3)=(xa)(bxc),的中位数是4a,b,c的中位数是4故答案为:4【点睛】本题考查十字相乘法分解因式以及中位数,掌握十字相乘法是正确分解因式的前提,确定a、b、c的值是得出正确答案的关键2、36【解析】【分析】根据“当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍”求解可得【详解】
15、解:数据a,b,c的方差为4,数据3a2,3b2,3c2的方差32436,故答案为:36【点睛】本题考查了方差的定义当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍3、1.2#65【解析】【分析】首先求出平均数,然后根据方差的计算法则求出方差【详解】解:平均数, 数据的方差 ,故答案为 :1.2【点睛】本题主要考查了求方差,解题的关键在于能够熟练掌握求方差的方法4、乙【解析】【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到乙比较稳定【详解】解:因为甲、乙的平
16、均数比丙大,所以甲、乙的产量较高,又乙的方差比甲小,所以乙的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是乙;故答案为:乙【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差方差是反映一组数据的波动大小的一个量方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好也考查了平均数5、0.8【解析】【分析】根据平均数的计算公式先求出a的值,再根据方差公式代数计算即可【详解】解:3,5,a,4,3的平均数是4,(3+5+a+4+3)5=4,解得:a=5,则这组数据的方差S2= (3
17、-4)2+(5-4)2+(5-4)2+(4-4)2+(3-4)2=0.8,故答案为:0.8【点睛】本题考查了方差,一般地设n个数据,x1,x2,xn的平均数为,则方差,此题难度不大三、解答题1、(1)25.25分,23.25分;(2)姚明在对阵“超音速”的比赛中发挥更稳定;(3)姚明在对阵“快船”的比赛中表现更好【分析】(1)根据平均数的计算方法,先求和,再除比赛次数即可得出平均每场的得分;(2)计算并比较得分的方差,根据方差的意义,即可得出结论;(3)根据“综合得分”的规定,分别计算姚明在比赛中的“综合得分”,再进行比较即可【详解】解:(1)姚明在对阵“超音速”的四场比赛中平均得分为:(分)
18、;在对阵“快船”的四场比赛中平均得分为:(分);(2)姚明在对阵“超音速”队的四场比赛中得分的方差为:,姚明在对阵“快船”队的四场比赛中得分的方差为:,s12s22,从得分的角度看,姚明在对阵“超音速”的比赛中发挥更稳定;(3)姚明在对阵“超音速”的四场比赛中综合分为:(分);在对阵“快船”的四场比赛中综合得分为:(分),从综合得分看,姚明在对阵“快船”的比赛中表现更好【点睛】本题考查了平均数和方差的计算方法及意义一般地设n个数据,x1,x2,xn的平均数为,则方差为 ,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立2、(1)85分,82.5分;(2)144;小明更优秀,应派出小
19、明代表学校参加比赛【分析】(1)根据众数和中位数的定义求解即可;(2)根据扇形统计图中的数据,可以得到演讲技巧项目的百分比,进而求出圆心角大小;根据加权平均数的定义列式计算出小明、小华的成绩,从而得出答案【详解】解:(1)小明在选拔赛中四个项目所得分数的众数是85分,中位数是=82.5(分);(2)1-5%-15%-40%=40%36040%=144答:演讲技巧项目对应扇形的圆心角为144;小明分数为:小华分数为:80.7577.75小明更优秀,应派出小明代表学校参加比赛【点睛】本题考查了众数、中位数、加权平均数,解题的关键是掌握众数、中位数、加权平均数的定义3、(1)甲组平均数为6.8,中位
20、数为6,乙组方差为1.96;(2)见解析【分析】(1)由折线图中数据,根据中位数和加权平均数、方差的定义求解可得;(2)可从平均数和中位数两方面阐述即可【详解】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,其平均数为=6.8,中位数为6,乙组成绩从小到大排列为:5、5、6、7、7、8、8、8、9、9,乙组学生成绩的方差为=2(5-7.2)2+(6-7.2)2+2(7-7.2)2+3(8-7.2)2+2(9-7.2)2=1.96;(2)因为乙组学生的平均分高于甲组学生,所以乙组学生的成绩好于甲组;因为乙组学生的中位数高于甲组学生,所以乙组学生的成绩
21、好于甲组;所以乙组学生的成绩好于甲队组【点睛】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键4、从平均成绩看,甲和乙的成绩比较好;从方差看,乙和丙发挥都比甲稳定,但结合平均成绩看,乙的水平更高【分析】根据统计图可得甲、乙、丙三人10次的射击成绩,通过比较平均成绩和方差综合判断【详解】本题力图进一步突出解决统计问题时可以“先直观估计再理性计算”图中反映甲、乙成绩的折线基本位于丙的上方,因此甲、乙的平均成绩高于丙;从图形看波动(离散程度),很明显乙和丙的数据波动较小,从平均成绩看,甲和乙的成绩比较好;从方差看,乙和丙发挥都比甲稳定,但结合平均成
22、绩看,乙的水平更高【点睛】本题考查数据的离散程度以及折线统计图,掌握从平均数和方差去判断数据的稳定性是解题的关键5、(1)90,90;(2)小明平时成绩的方差;(3)小明本学期的综合成绩是93.5分解题过程见解析【分析】(1)根据众数和中位线的概念求解即可;(2)先求出平时成绩的平均数,然后根据方差的计算公式代入求解即可;(3)根据加权平均数的计算方法求解即可【详解】解:(1)由表格可知,出现次数最多的90,小明6次成绩的众数是90分;把这6次成绩按从小到大排列为:86,88,90,90,92,96,中间两个数为90,90,中位数为:,故答案为:90,90;(2)平均分,小明平时成绩的方差;(3),小明本学期的综合成绩是93.5分【点睛】此题考查了平均数,中位数,众数,方差的计算等知识,解题的关键是熟练掌握平均数,中位数,众数,方差的计算方法