《精品试题北师大版九年级数学下册第二章二次函数专题训练试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《精品试题北师大版九年级数学下册第二章二次函数专题训练试卷(无超纲).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第二章二次函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,将抛物线yx2向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是( )Ay(
2、x1)21By(x1)21Cy(x1)21Dy(x1)212、若A(-6,y1),B(-3,y2),C(1,y3)为二次函数图象上的三点,则y1,y2,y3的大小关系是( )Ay2y3y1By1y2y3Cy3y1y2Dy2y1y33、如图,抛物线与x轴交于点,对称轴为直线结合图象分析下列结论:;一元二次方程的两根分别为,;若为方程的两个根,则且其中正确的结论有( )个A2B3C4D54、若关于x的二次函数,当时,y随x的增大而减小,且关于y的分式方程有整数解,则符合条件的所有整数a的和为( )A1BC8D45、如图,一段抛物线,记为,它与x轴交于点O,;将绕点旋转180得,交x轴于点;将绕点旋
3、转180得,交x轴于点;,如此进行下去,直至得,若在第5段抛物线上,则m值为( )A2B1.5CD6、下图是抛物线y = ax2 + bx + c的示意图,则a的值可以是( )A1B0C- 1D- 27、在平面直角坐标系xOy中,下列函数的图象经过点的是( )ABCD8、如图,抛物线yax2+bx+c(a0)与x轴交于点A(1,0),与y轴的交点B在点(0,2)与点(0,3)之间(不包括这两点),对称轴为直线x2有以下结论:abc0;5a+3b+c0;a;若点M(9a,y1),N(a,y2)在抛物线上,则y1y2其中正确结论的个数是( )A1B2C3D49、在平面直角坐标系中,将抛物线yx24
4、x向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()Ay(x+1)2+1By(x+1)29Cy(x5)2+1Dy(x5)2910、在平面直角坐标系xOy中,抛物线向上平移2个单位长度得到的抛物线为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,二次函数yax2bxc的图像过点A(3,0),对称轴为直线x1,则不等式ax2bxc0时x的取值范围是_2、二次函数,自变量x与函数y的对应值如表:x0123y500512则当时,y满足的范围是_3、从2,1,1,3,5五个数中随机选取一个数作为二次函数yax2+x3中a的值,则二次函数图象开口向上
5、的概率是 _4、某种产品今年的年产量是20t,计划今后两年增加产量如果每年的产量都比上一年增加x倍,两年后这种产品的产量y与x之间的函数表达式是_5、如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函数关联的二次函数如果一次函数的关联二次函数是(),那么这个一次函数的解析式为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xOy中,一次函数y2x+m与二次函数yax2+bx+c的图象相交于A,B两点,点A(1,4)为二次函数图象的顶点,点B在x轴上(1)求二次函数的解析
6、式;(2)根据图象,求二次函数的函数值大于0时,自变量x的取值范围2、在实施乡村振兴战略和移动互联快速进化的大背景下,某电商平台以10元/千克的价格收购一批农产品进行销售,经前期销售发现日销售量y(千克)与销售价格x(元/千克)之间满足一次函数关系,整理部分数据如下表:销售价格x(元/千克)1213141516日销售量y(千克)1000900800700600(1)求y关于x的函数表达式(2)为了稳定物价,有关管理部门规定这种农产品利润率不得高于50%,该平台应如何确定这批农产品的销售价格,才能使日销售利润w最大?(利润=售价成本,利润率=利润成本100%)3、如图,在平面直角坐标系xOy中,
7、 抛物线与轴交于点 和 点,与轴交于点, 顶点为(1)求该抛物线的表达式的顶点的坐标;(2)将抛物线沿轴上下平移, 平移后所得新拋物线顶点为, 点的对应点为如果点落在线段上, 求的度数;设直线与轴正半轴交于点, 与线段交于点, 当时, 求平移后新抛物线的表达式4、如图,在平面直角坐标系中,抛物线过点,(1)求这条抛物线的解析式;(2)当时,的取值范围是_5、在平面直角坐标系xOy中,点(1,m)和点(3,n)在二次函数yx2bx的图象上(1)当m-3时求这个二次函数的顶点坐标; 若点(-1,y1),(a,y2)在二次函数的图象上,且y2y1,则a的取值范围是_;(2)当mn0时,求b的取值范围
8、-参考答案-一、单选题1、B【分析】直接根据“左加右减,上加下减”的规律写出即可【详解】解:向上平移两个单位长度,再向右平移一个单位长度后的顶点坐标,所得抛物线解析式是y=(x-1)2+1,故选:B【点睛】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式2、A【分析】根据二次函数的对称性和增减性即可得【详解】解:二次函数的对称轴为直线,时的函数值与时的函数值相等,即为,又在内,随的增大而减小,且,故选:A【点睛】本题考查了二次函数的图象与性质,熟练掌握二次函数的对称性和增减性是解题关键3、C【分析】根据二次函数图象的开口方向、对称轴、顶点
9、坐标、增减性以及二次函数与一元二次方程的关系,逐项判断即可【详解】解:抛物线开口向下,因此a0,对称轴为x=10,因此a、b异号,所以b0,抛物线与y轴交点在正半轴,因此c0,所以abc0,故正确;当x=2时,y=4a+2b+c0,故正确;抛物线与x轴交点(3,0),对称轴为x=1因此另一个交点坐标为(-1,0),所以a-b+c=0,又x=-=1,有2a+b=0,所以3a+c=0,而a0,c0,因此2a+c0,故不正确;由cx2+bx+a=0可得方程的解为和,抛物线与x轴交点(3,0),(-1,0),即方程ax2+bx+c=0的两根为x1=3,x2=-1;, 当时, 3a+c=0,c=-3a,
10、cx2+bx+a=0的两根,x2=-1,故正确;抛物线y=ax2+bx+c与x轴交点(3,0),(-1,0),且a0,因此当y=-2时,相应的x的值大于3,或者小于-1,即m-1,n3,故正确;综上所述,正确的结论有:共4个,故选:C【点睛】本题考查二次函数的图象和性质,掌握二次函数的a、b、c的值决定抛物线的位置是正确判断的关键4、A【分析】根据抛物线的性质,得到;整理分式方程,得到y=,根据分式方程有整数解,且y=1时,对应a值不能取,确定符合题意的a值,最后求和即可【详解】关于x的二次函数,当时,y随x的增大而减小,即a2;,(a-1)y=-4,当y=1时,a=-3,此值要舍去;y=,关
11、于y的分式方程有整数解,1-a=1;1-a=2;1-a=4;a=0或a=2;a=-1或a=3;a=-3或a=5;a2,且a-3,a=0或a=2或a=-1;符合条件的所有整数a的和-1+0+2=1,故选A【点睛】本题考查了二次函数的对称性,分式方程的整数解,正确判定抛物线对称轴的属性,正确求得整数解的a值是解题的关键5、A【分析】求出抛物线C1与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线C5平移的距离,再根据向右平移横坐标减表示出抛物线C5的解析式,然后把点P的坐标代入计算即可得解【详解】解:令y0,则x(x3)0,解得x10,x23,A1(3,0),由图可知,抛物
12、线C5在x轴上方,相当于抛物线C1向右平移4312个单位得到,抛物线C5的解析式为y(x12)(x123)(x12)(x15),P(14,m)在第5段抛物线C5上,m(1412)(1415)2故选:A【点睛】本题考查了抛物线与x轴的交点,二次函数图象与几何变换,确定抛物线C5的关系式是解题的关键,平移的规律:左加右减,上加下减6、A【分析】根据二次函数的图象确定a的取值范围即可得【详解】解:根据二次函数图象可得:开口向上,故选:A【点睛】题目主要考查根据函数图象确定二次函数字母系数的取值范围,熟练掌握二次函数图象的基本性质是解题关键7、B【分析】利用时,求函数值进行一一检验是否为0即可【详解】
13、A.当时,图象过点,选项A不合题意;B.当时,图象过点,选项B合题意;C.当时,图象过点,选项C不合题意;D.当时,无意义,选项D不合题意故选:B【点睛】本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键8、C【分析】根据二次函数的图象与系数的关系即可求出答【详解】解:由开口可知:a0,对称轴 b0,由抛物线与y轴的交点可知:c0,abc0,故正确;对称轴x=, b=-4a,5a+3b+c=5a- 12a+c=-7a+c,a0,c0,-7a+c0,5a+3b+c 0,故正确;x=-1,y=0,a-b+c=0, b=-4a,c=-5a,2c3,2
14、-5a3,a,故正确;点M(-9a,y1),N(,y2) 在抛物线上,则 当时,y1y2当-时,y1y2故错误故选: C【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型9、A【分析】先将抛物线配方为顶点式,根据抛物线平移规律“左加右减,上加下减”解答即可【详解】解:将抛物线配方为顶点式,将抛物线先向左平移3个单位,再向上平移5个单位,得到的抛物线的解析式是y(x-2+3)24+5,即故选:A【点睛】本题考查抛物线的平移,熟练掌握抛物线平移规律是解答的关键10、D【分析】抛物线的平移规律:左加右减,上加下减,利用平移规律直接可得答案.【详解】解:抛物线
15、向上平移2个单位长度得到的抛物线为 故选D【点睛】本题考查的是抛物线的平移,掌握“抛物线的上下平移规律”是解本题的关键.二、填空题1、【分析】由题意易得抛物线与x轴的另一个交点为(-1,0),然后根据图象可进行求解【详解】解:二次函数yax2bxc的图像过点A(3,0),对称轴为直线x1,由二次函数的对称性可得抛物线与x轴的另一个交点为(-1,0),ax2bxc0,由图象可知x的取值范围是;故答案为【点睛】本题主要考查二次函数与不等式的关系,熟练掌握二次函数的图象与性质是解题的关键2、【分析】运用待定系数法求出二次函数解析式,判断图象开口方向,求出对应的函数值,从而可判断出y的取值范围【详解】
16、解:取(-3,0),(-2,-3),(0,-3)代入,得 解得, 函数图象开口向上,对称轴为直线,顶点坐标为(-1,-4)当时, 当时,y满足的范围是故答案为:【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解数形结合是解题的关键3、【分析】二次函数图象开口向上得出a0,从所列5个数中找到a0的个数,再根据概率公式求解可得【详解】解:从2,1,1,3,5五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1,3,5这3种结果,该二次函数图象开口向上的概率为,故答案为:【点
17、睛】本题主要考查概率公式及二次函数的性质,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数4、【分析】根据每年的产量都比上一年增加x倍,列出函数解析式,即可求解【详解】解:根据题意得:故答案为:【点睛】本题主要考查了二次函数的实际应用,明确题意,准确得到数量关系是解题的关键5、【分析】由题意可知二次函数与坐标轴的三个交点坐标为(0,k),(1,0),(-k,0),将其代入抛物线()即可得m、k的二元一次方程组,即可解出,故这个一次函数的解析式为【详解】一次函数与y轴的交点为(0,k),与x轴的交点为(1,0)绕O点逆时针旋转90后,与x轴的交点为(-k,0)
18、即(0,k),(1,0),(-k,0)过抛物线()即得将代入有整理得解得k=3或k=-1(舍)将k=3代入得故方程组的解为则一次函数的解析式为故答案为:【点睛】本题考查了一次函数和二次函数的图象及其性质,解二元一次方程组,结合旋转的性质以及图象得出抛物线与坐标轴的三个交点坐标是解题的关键三、解答题1、(1);(2)【分析】(1)把点A代入一次函数解析式,求出一次函数解析式和点B的坐标,然后设出二次函数顶点式,把点B代入即可求出二次函数解析式;(2)由图像可知,x轴上面部分的二次函数值都大于0,根据二次函数与x轴的交点特征求得二次函数与x轴的交点即可得出答案【详解】解:(1)点A(1,4)在一次
19、函数y2x+m上,把点A(1,4)代入y2x+m,得,421+m,解得:m6,一次函数解析式为:y2x+6,令y0时,则2x+60,解得:x3,点B的坐标为:(3,0),点A(1,4)为二次函数图象的顶点,点B在x轴上,设二次函数解析式为:,把点B(3,0)代入,解得:a1,二次函数的解析式为:;(2)由(1)求得二次函数解析式为,令y0,即,解得:,由图像可知x轴上面部分的二次函数值都大于0,且二次函数与x轴交于点(1,0)和(3,0),自变量x的取值范围:【点睛】本题考查了一次函数的图像和性质,二次函数的图像和性质,根据顶点坐标设出二次函数顶点式是求出二次函数的关键2、(1)y关于x的函数
20、表达式为;(2)当销售价格为15元时,才能使日销售利润最大【分析】(1)设y关于x的函数表达式为,然后由表格任取两个数据代入求解即可;(2)由(1)及题意易得,然后根据“规定这种农产品利润率不得高于50%”及二次函数的性质可进行求解【详解】解:(1)设y关于x的函数表达式为,则把和代入得:,解得:,y关于x的函数表达式为;(2)由(1)及题意得:,-1000,开口向下,对称轴为直线,这种农产品利润率不得高于50%,解得:,当时,w随x的增大而增大,当时,w有最大值;答:当销售价格为15元时,才能使日销售利润最大【点睛】本题主要考查二次函数与一次函数的应用,解题的关键是得到销售量与销售价格的函数
21、关系式3、(1),;(2);【分析】(1)把点 和 点代入抛物线的解析式。利用待定系数法求解抛物线的解析式即可;(2)先求解 直线为: 设平移后的抛物线为: 由新抛物线的顶点在上, 可得新的抛物线为: 同理可得: 再利用勾股定理的逆定理证明 从而可得答案;如图,连接 同理可得: 由平移的性质可得: 则 可得 设平移后的抛物线为:同理: 且 再利用 列方程解方程求解 从而可得答案.【详解】解:(1)抛物线与轴交于点 和 点,解得: 所以抛物线的解析式为:, 抛物线的顶点 (2) ,令 则 设直线为: 解得: 所以直线为: 设平移后的抛物线为: 抛物线的顶点为: 在上, 所以新的抛物线为: 同理可
22、得: 如图,连接 同理可得: 由平移的性质可得: 则 设平移后的抛物线为:同理: 且 解得: 所以平移后的抛物线为:【点睛】本题考查的是利用待定系数法求解二次函数的解析式与一次函数的解析式,二次函数图象的平移,平移的性质的应用,勾股定理及勾股定理的逆定理的应用,数形结合及证明是解(2)问的关键.4、(1);(2)或【分析】(1)把,代入中求出,即可得出答案;(2)由二次函数的图像与性质即可得出答案【详解】(1)把,分别代入,得,解得:,;(2)令得:,解得:或,开口向上,当时,或【点睛】本题考查二次函数的图像与性质,掌握待定系数法求解析式以及二次函数的性质是解题的关键5、(1);或;(2)【分
23、析】(1)将点(1,-3)代入yx2bx求出b的值,得出函数关系式,再进行配方即可得到抛物线的顶点坐标;根据函数的图象,结合函数性质可得出a的取值;(2)用含有b的代数式分别表示出m,n,根据mn0分类讨论即可【详解】解:(1)当m-3时把点(1,-3)代入yx2bx,得b-4,二次函数表达式为yx2 -4x(x-2)2 -4所以顶点坐标为(2,-4)根据题意得抛物线yx2 -4x开口向上,对称轴为直线x=2,y2y1,i)当点(-1,y1),(a,y2)在抛物线对称轴左侧时,有;ii)当点(-1,y1),(a,y2)在抛物线对称轴两侧时,根据对称性可知;所以a的取值范围是:a-1或a5故答案为:a-1或a5(2)将点(1,m),(3,n)代入yx2bx,可得m1b ,n93b当mn0时,有两种情况:若 把m1b ,n93b代入可得 此时不等式组无解若 把m1b ,n93b代入可得解得-3b-1 所以-3b-1【点睛】本题考查了运用待定系数法求二次函数解析式以及二次函数图象上点的特点,能结合题意确定b的取值范围是解题的关键