2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程定向训练试题(含答案及详细解析).docx

上传人:可****阿 文档编号:30746387 上传时间:2022-08-06 格式:DOCX 页数:18 大小:370.78KB
返回 下载 相关 举报
2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程定向训练试题(含答案及详细解析).docx_第1页
第1页 / 共18页
2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程定向训练试题(含答案及详细解析).docx_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程定向训练试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程定向训练试题(含答案及详细解析).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第五章分式与分式方程定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若分式的值为0,则x的值是()A0B2C2或2D22、下列等式成立的是()ABCD3、关于x的分式方程的解

2、是正数,则字母m的取值范围是( )ABC且D且4、化简的结果是( )ABCD5、下列关于x的方程是分式方程的是( )ABCD6、已知关于x的分式方程的解是正数,则m的取值范围是( )ABC且D且7、根据分式的基本性质,分式可变形为()ABCD8、用换元法解分式方程+10时,如果设y,那么原方程可以变形为整式方程()Ay23y10By2+3y10Cy2y10Dy2+y109、当分式有意义时,x的取值范围是( )ABCD10、若分式中的a,b的值同时扩大到原来的4倍,则分式的值( )A是原来的8倍B是原来的4倍C是原来的D不变第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、

3、当x_时,分式的值为02、若分式有意义,则x的取值范围是_3、使分式有意义的x的取值范围是_4、若,且,则的值为_5、开学在即,由于新冠疫情学校决定共用8000元分两次购进口罩6000个免费发放给学生若两次购买口罩的费用相同,且第一次购买口罩的单价是第二次购买口罩单价的1.5倍,则第二次购买口罩的单价是 _元三、解答题(5小题,每小题10分,共计50分)1、某家电销售商城电冰箱的销售价为每台元,空调的销售价为每台元,每台电冰箱的进价比每台空调的进价多元,商场用元购进电冰箱的数量与用元购进空调的数量相等(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共台,设购进电冰

4、箱台,这台家电的销售总利润元,要求购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,请确定获利最大的方案以及最大利润(3)实际进货时,厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这台家电销售总利润最大的进货方案2、某经销商用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元(1)求一件A,B型商品的进价分别为多少元?(2)若该经销商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为2

5、20元/件,且全部售出,设购进A型商品m件,求该经销商销售这批商品的利润p与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,该经销商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该经销商售完所有商品并捐献慈善资金后获得的最大收益3、冬季来临,某商场预购进一批毛衣用9600元先购进一批毛衣,面市后因供不应求,商场决定又用16800元再次购进这批毛衣,所购数量是第一批购进量的2倍,但单价便宜了10元该商场第一次购进这批毛衣的数量是多少?4、解分式方程:5、A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬

6、运900kg所用时间与B型机器人搬运600kg所用时间相等(1)A、B两种机器人每小时分别搬运多少千克化工原料?(2)某化工厂有3000kg化工原料需要搬运,A型机器人先工作若干小时,然后B型机器人加入一起搬运化工原料,所有化工原料搬运完成若A、B两种机器人合作的时间不超过10小时,则A种机器人至少先工作多少小时?-参考答案-一、单选题1、B【分析】根据分式的值为0的条件,可得,且,解出即可【详解】,故选:B【点睛】本题主要考查了分式的值为0的条件,熟练掌握当分式的分子为0,分母不等于0时,分式的值为0是解题的关键2、C【分析】直接根据分式的性质进行判断即可【详解】解:A. ,故选项A不符合题

7、意;B,故选项B不符合题意;C. ,故选项C符合题意;D. ,故选项D不符合题意;故选C【点睛】本题主要考查了分式性质的应用,熟练掌握分式性质是解答本题的关键3、A【分析】解分式方程,得到含字母m的方程,解此方程,再根据该方程的解是整数,结合分式方程的分母不为零,得到两个关于字母m的不等式,解之即可【详解】解:方程两边同时乘以(x+1),得到因为分式方程的解是正数, 故选:A【点睛】本题考查分式方程的解、解一元一次不等式等知识,难度较易,掌握相关知识是解题关键4、D【分析】最简公分母为,通分后求和即可【详解】解:的最简公分母为,通分得故选D【点睛】本题考查了分式加法运算解题的关键与难点是找出通

8、分时分式的最简公分母5、C【分析】根据分式方程的定义判断选择即可【详解】A. ,是一元一次方程,不符合题意; B. ,是一元一次方程,不符合题意; C. ,是分式方程,符合题意; D. ,是一元一次方程,不符合题意故选:C【点睛】本题考查分式方程的定义掌握分式方程是指分母里含有未知数或含有未知数整式的有理方程是解答本题的关键6、D【分析】先求出分式方程的解,由方程的解是正数得m-20,由x-10,得m-2-10,计算可得答案【详解】解:,m-3=x-1,得x=m-2,分式方程的解是正数,x0即m-20,得m2,x-10, m-2-10,得m3,且,故选:D【点睛】此题考查了利用分式方程的解求参

9、数的取值范围,正确求解分式方程并掌握分式的分母不等于零的性质是解题的关键7、C【分析】分式的恒等变形是依据分式的基本性质,分式的分子分母同时乘以或除以同一个非0的数或式子,分式的值不变【详解】解:依题意得:=故选:C【点睛】本题考查的是分式的性质,理解将负号提出不影响分式的值是解题关键8、D【分析】根据换元法,把换成y,然后整理即可得解【详解】解:y,原方程化为整理得:y2+y10故选D【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理9、

10、C【分析】分式有意义的条件是分式的分母不等于零,据此解答【详解】解:由题意得,解得,故选:C【点睛】此题考查了分式有意义的条件,熟记条件并正确计算是解题的关键10、D【分析】根据分式的基本性质,把a,b的值同时扩大到原来的4倍,代入原式比较即可【详解】解:a,b的值同时扩大到原来的4倍,原式=;分式的值不变;故选:D【点睛】本题考查了分式的基本性质,解题关键是熟练运用分式的基本性质进行化简二、填空题1、4【分析】分式的值为0的条件是:(1)分子0;(2)分母0两个条件需同时具备,缺一不可据此可以解答本题【详解】解:分式的值为0,且,解得:x4时,分式的值为0,故答案为:4【点睛】考查了分式的值

11、为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0这两个条件缺一不可2、【分析】利用分式有意义的条件:分母不能为0,即可求出答案【详解】解:分式有意义,故有,故答案为:【点睛】本题主要是考查了分式有意义的条件,熟练掌握分式有意义的条件,是解决该题的关键3、【分析】根据分式有意义的条件,列出不等式,进而即可求解【详解】解:由题意得:x-10,故答案是:【点睛】本题主要考查分式有意义的条件,掌握分式的分母不等于0,是解题的关键4、5【分析】先通分,再整体代入求值即可得到结果【详解】解:,且,故答案为:5【点睛】解答本题的关键是熟练掌握最简公分母的确定方法:系数取各分母

12、系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积5、【分析】设第二次购买口罩的单价是x元,则第一次购买口罩的单价是1.5x元,根据两次购买口罩的费用相同,两次购进口罩6000个,列出方程求解即可【详解】解:800024000(元)设第二次购买口罩的单价是x元,则第一次购买口罩的单价是1.5x元,依题意得:+6000, 解得:x,经检验,x是原方程的解,且符合题意故答案为:【点睛】本题考查了分式方程的应用,解题关键是准确把握题目中的数量关系,找出等量关系列方程三、解答题1、(1)每台空调的进价为元,则每台电冰箱的进价为元;(2)当购进电冰箱台,空调台获利最大,最大利润为元;(3)当时,购

13、进电冰箱台,空调台销售总利润最大;当时,各种方案利润相同;当时,购进电冰箱台,空调台销售总利润最大【分析】设每台空调的进价为元,则每台电冰箱的进价为元,根据商城用“80000元购进电冰箱的数量与用元购进空调的数量相等”,列出方程,即可解答;设购进电冰箱台,这台家电的销售总利润为元,则y=(2100-2000)x+(1750-1600)(100-x)=-50x+15000,由题意:购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,列出不等式组,解得3313x40,再由为正整数,的,即合理的方案共有种,然后由一次函数的性质,确定获利最大的方案以及最大利润;当电冰箱出厂价下调k(0k0;当时;

14、当k-500;利用一次函数的性质,即可解答【详解】解:设每台空调的进价为元,则每台电冰箱的进价为元,根据题意得:,解得:,经检验,是原方程的解,且符合题意,x+400=1600+400=2000,答:每台空调的进价为元,则每台电冰箱的进价为元设购进电冰箱台,这台家电的销售总利润为元,则y=(2100-2000)x+(1750-1600)(100-x)=-50x+15000,根据题意得:100-x2xx40,解得:3313x40,为正整数,x=34,合理的方案共有种,即电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;,

15、随的增大而减小,当时,有最大值,最大值为:-5034+15000=13300(元,答:当购进电冰箱台,空调台获利最大,最大利润为13300元当厂家对电冰箱出厂价下调k(0k0,即50k100时,随的增大而增大,3313x40,当时,这台家电销售总利润最大,即购进电冰箱台,空调台;当时,各种方案利润相同;当k-500,即0k50时,随的增大而减小,3313x40,当时,这台家电销售总利润最大,即购进电冰箱台,空调台;答:当50k100时,购进电冰箱台,空调台销售总利润最大;当时,各种方案利润相同;当0k50时,购进电冰箱台,空调台销售总利润最大【点睛】本题考查了列分式方程的应用、一元一次不等式组

16、的应用以及一次函数的应用,找准数量关系,正确列出分式方程和一元一次不等式组是解题的关键2、(1)一件B型商品的进价为150元,则一件A型商品的进价为160元;(2);(3)当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为元根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润两种商品的利润之和,列出式子即可解决问题;(3)设利润为元则,分三

17、种情形讨论利用一次函数的性质即可解决问题(1)解:设一件B型商品的进价为x元,则一件A型商品的进价为元,由题意:,解得,经检验是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元;(2)解:客商购进A型商品m件,客商购进B型商品件,由题意:,A型商品的件数不大于B型的件数,且不小于80件,;(3)解:设收益为元,则,当时,即时,w随m的增大而增大,当时,最大收益为元;当,即时,最大收益为17500元;当时,即时,w随m的增大而减小,时,最大收益为元,当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益

18、为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元【点睛】本题主要考查了分式方程的实际应用,一次函数的实际应用,熟练掌握相关知识及寻找题目的等量关系列式求解是解决本题的关键3、该商场第一次购进这批毛衣的数量是120件【分析】设该商场第一次购进这批毛衣的数量是x件,根据题中第二次单价比第一次单价便宜10元列出分式方程求解即可【详解】解:设该商场第一次购进这批毛衣的数量是x件,则第二次购进这批毛衣的数量是2x件,根据题意,得:,解得:x=120,经检验,x=120是所列方程的解,答:该商场第一次购进这批毛衣的数量是120件【点睛】本题考查分式方程的应用,理解题意,正确列出分式方程是

19、解得的关键4、【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:去分母得:去括号得:,解得:,检验:当时,最简公分母,原方程的解是【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根5、(1)B型号机器人每小时搬运60千克,A型号机器人每小时搬运90千克;(2)A种机器人至少先工作小时【分析】(1)设B型号机器人每小时搬运x千克,A型号机器人每小时搬运千克,列出分式方程计算即可;(2)设A种机器人至少先工作t小时,列出方程计算即可;【详解】(1)设B型号机器人每小时搬运x千克,A型号机器人每小时搬运千克,则,解得:,经检验,是分式方程的解,B型号机器人每小时搬运60千克,A型号机器人每小时搬运90千克;(2)A、B两种机器人合作的时间不超过10小时,设A种机器人至少先工作t小时,则,解得:,A种机器人至少先工作小时【点睛】本题主要考查了分式方程的应用,一元一次方程的应用,正确列出方程准确计算是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁