《2022年精品解析沪科版九年级数学下册第26章概率初步课时练习试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪科版九年级数学下册第26章概率初步课时练习试题(名师精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第26章概率初步课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验
2、可能是()A掷一枚正六面体的骰子,出现1点的概率B一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C抛一枚硬币,出现正面的概率D任意写一个整数,它能被2整除的概率2、下列说法正确的是( )A“买中奖率为的奖券10张,中奖”是必然事件B“汽车累积行驶,出现一次故障”是随机事件C襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D若两组数据的平均数相同,则方差大的更稳定3、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )ABCD4、抛掷一枚质地均匀的硬币三
3、次,恰有两次正面向上的概率是( )ABCD5、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )ABCD6、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是( )ABCD7、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进)则小张从不同的出入口进出的概率是()ABCD8、一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外其他都相同则在下列说法中正确的是( )A无放回的从中连续摸出三个红球是随机事件B从中摸出一个棕色球是随机事件C无放回的从中连续摸出两个白球是不可能事件D
4、从中摸出一个红色球是必然事件9、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾”你认为池塘主的做法( )A有道理,池中大概有1200尾鱼B无道理C有道理,池中大概有7200尾鱼D有道理,池中大概有1280尾鱼10、为了深化落实“双减”工作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为( )AB
5、CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某商场开展购物抽奖活动,抽奖箱内有标号分别为1、2、3、4、5、6、7、8、9、10十个质地、大小相同的小球,顾客从中任意摸出一个球,摸出的球的标号是3的倍数就得奖,顾客得奖概率是_2、过年时包了100个饺子,其中有10个饺子包有幸运果,任意挑选一个饺子,正好是包有幸运果饺子的概率是 _3、一个盒子里装有除颜色外都相同的1个红球,4个黄球把下列事件的序号填入下表的对应栏目中从盒子中随机摸出1个球,摸出的是黄球;从盒子中随机摸出1个球,摸出的是白球;从盒子中随机摸出2个球,至少有1个是黄球事件必然事件不可能事件随机事件序
6、号_4、时隔十三年,奥运圣火再次在北京点燃北京将首次举办冬奥会,成为国际上唯一举办过夏季和冬季奥运会的“双奥之城”墩墩和融融积极参加雪上项目的训练,现有三辆车按照1,2,3编号,两人可以任选坐一辆车去训练,则两人同坐2号车的概率是_5、已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为 _三、解答题(5小题,每小题10分,共计50分)1、从两副完全相同的扑克中,抽出两张黑桃5和两张梅花8,现将这四张扑克牌洗匀后,背面向上放在桌子上,(1)问从中随机抽取一张扑克牌是梅花8的概率是多少?(2)利用树状图或列表法表示从中随机抽取两张扑克牌成为一
7、对的概率2、钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,尽量呆在家,勤洗手,多运动,多看书,少熬夜”学校为鼓励学生抗疫期间在家阅读,组织九年级全体同学参加了疫期居家海量读书活动,随机抽查了部分同学读书本数的情况统计如图所示(1)本次共抽查学生_人,并将条形统计图补充完整;(2)在九年级1000名学生中,读书15本及以上(含15本)的学生估计有多少人?(3)在九年级六班共有50名学生,其中读书达到25本的有两位男生和两位女生,老师要从这四位同学中随机邀请两位同学分享读书心得,试通过画树状图或列表的方法求恰好是两位男生分享心得的概率3、山西某高校为了弘扬女排精神,组建了女排社团,通
8、过测量女同学的身高(单位:cm),并绘制了两幅不完整的统计图,请结合图中提供的信息,解答下列问题(1)填空:该排球社团一共有 名女同学,a (2)把频数分布直方图补充完整(3)随机抽取1名学生,估计这名学生身高高于160cm的概率4、2021年5月26日,长春国际马拉松开赛,小红和小雨参加了该赛事的志愿者服务工作,被随机分配到A“半程马拉松”,B“全程马拉松”,C“五公里”三个项目组(1)小雨被分配到C“五公里”项目组的概率为 ;(2)用画树状图(或列表)的方法,求小红和小雨被分到同一组的概率5、新冠病毒在全球肆虐,疫情防控刻不容缓某校为了解学生对新冠疫情防控知识的了解程度,组织七、八年级学生
9、开展新冠疫情防控知识测试(满分为10分)学校学生处从七、八年级学生中各随机抽取了20名学生的成绩进行了统计下面提供了部分信息抽取的20名七年级学生的成绩(单位:分)为:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5抽取的40名学生成绩分析表:年级七年级八年级平均分88.1众 数8b中位数a8方 差1.91.89请根据以上信息,解答下列问题:(1)直接写出上表中a,b的值;(2)该校七、八年级共有学生2000人,估计此次测试成绩不低于9分的学生有多少人?(3)在所抽取的七年级与八年级得10分的学生中,随机抽取2名学生在全校学生大会上进行新冠疫情防控知识宣讲,求
10、所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率-参考答案-一、单选题1、B【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率0.33,故此选项符合题意;C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意故选:B【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数
11、与总情况数之比同时此题在解答中要用到概率公式2、B【分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案【详解】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;故选:B【点睛】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键3、B【分析】列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解
12、即可【详解】解:列表如下:12123234由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,所以两次摸出的小球的标号之和是3的概率为,故选:B【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率4、C【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:列树状图如下所示: 根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,恰好有两次正面朝上的事件概率是:故选C【点睛】本题主要考查了树状图法求概率,解
13、题的关键是根据题意画出树状图5、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案【详解】解:在不透明的布袋中装有1个白球,2个红球,3个黑球,从袋中任意摸出一个球,摸出的球是红球的概率是:故选:B【点睛】此题考查了概率公式的应用注意概率=所求情况数与总情况数之比6、C【分析】根据骰子各面上的数字得到向上一面的点数可能是3或4,利用概率公式计算即可【详解】解:一枚质地均匀的骰子共有六个面,点数分别为1,2,3,4,5,6,点数大于2且小于5的有3或4,向上一面的点数大于2且小于5的概率是=,故选:C【点睛】此题考查了求简单事件的概率,正确掌握概率的计
14、算公式是解题的关键7、D【分析】先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可【详解】解:列树状图如下所示:由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,P小张从不同的出入口进出的结果数,故选D【点睛】本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率8、A【分析】随机事件是在一定条件下,可能发生,也可能不发生的事件,必然事件是一定会发生的,不受外界影响的,发生概率是100%,不可能事件一定不会发生,概率是0根据事件的定义与分类对各选项进行辨析即可【详解】无放
15、回的从中连续摸出三个红球可能会发生,也可能不会发生是随机事件,故选项A正确;一个不透明的盒子中装有2个白球,5个红球,没有棕色球,从中摸出一个棕色球是不可能事件,故选项B不正确;无放回的从中连续摸出两个白球可能会发生,也可能不会发生是随机事件,故选项C不正确;一个不透明的盒子中装有2个白球,5个红球,从中摸出一个红色球可能会发生,也可能不会发生是随机事件,故选项D不正确故选A【点睛】本题考查随机事件,必然事件,不可能事件,掌握事件识别方法与分类标准是解题关键9、A【分析】设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解【详解】解:设池中大概有鱼x尾,由题意得:,解得:,经检验:是原方程
16、的解;池塘主的做法有道理,池中大概有1200尾鱼;故选A【点睛】本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键10、C【分析】根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率【详解】解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得:业睡机读体业(业,睡)(业,机)(业,读)(业,体)睡(睡,业)(睡,机)(睡,读)(睡,体)机(机,业)(机,睡)(机,读)(机,体)读(读,业)(读,睡)(读,机)(读,体)体(体,业)(体,睡)(体,机)(体,读)根据表格可得:共有20种可能,满足“作业”和“手机”的
17、情况有两种, 抽到“作业”和“手机”的概率为:,故选:C【点睛】题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键二、填空题1、【分析】结合题意,首先分析3的倍数的数量,再根据概率公式的性质计算,即可得到答案【详解】根据题意,3的倍数有:3,6,9,共3个数摸出的球的标号是3的倍数的概率是:,即顾客得奖概率是:故答案为:【点睛】本题考查了概率的知识;解题的关键是熟练掌握概率公式,从而完成求解2、【分析】直接利用概率公式进行计算即可.【详解】解:过年时包了100个饺子,有10个饺子包有幸运果,任意挑选一个饺子,正好是包有幸运果饺子的概率是 故答案为:【点睛】本题考查的是简单随
18、机事件的概率,熟练的利用概率公式进行计算是解本题的关键;概率的含义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、 【分析】直接利用必然事件:一定发生的事件;不可能事件:一定不会发生的事件;随机事件:可能发生可能不发生的事件,来依次判断即可【详解】解:根据盒子里装有除颜色外都相同的1个红球,4个黄球,从盒子中随机摸出1个球,摸出的是黄球,属于随机事件;从盒子中随机摸出1个球,摸出的是白球,属于不可能事件;从盒子中随机摸出2个球,至少有1个是黄球,属于必然事件;故答案是:,【点睛】本题考查了必然事件、不可能事件、随机事件,解题的关键是掌
19、握相应的概念进行判断4、【分析】先画树状图得到所有的等可能性的结果数,然后找到两人同坐2号车的结果数,再依据概率公式求解即可【详解】解:列树状图如下:由树状图可知一共有9种等可能性的结果数,其中两人同坐2号车的结果数为1种,两人同坐2号车的概率,故答案为:【点睛】本题主要考查了树状图法或列表法求解概率,熟知树状图或列表法求解概率是解题的关键5、【分析】根据概率的公式,即可求解【详解】解:根据题意得:这个球是白球的概率为 故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键三、
20、解答题1、(1);(2)【分析】(1)根据概率公式计算即可;(2)根据列表法求概率即可【详解】(1)根据题意共有4张牌,两张梅花8,从中随机抽取一张扑克牌是梅花8的概率是;(2)列表如下,55885558585555858585858888585888共有12种等可能结果,其中凑成一对的有4种,随机抽取两张扑克牌成为一对的概率为【点睛】本题考查了概率公式求求概率和列表法求概率,掌握求概率的方法是解题的关键2、(1)50,图见解析;(2)500人;(3)图表见解析,【分析】(1)由题意根据C的人数和所占的百分比,可以求得本次共抽查学生人数,然后即可计算出读书10本的人数,从而可以将条形统计图补充
21、完整;(2)由题意根据条形统计图中的数据,可以计算出读书15本及以上(含15本)的学生估计有多少人;(3)根据题意,可以画出相应的树状图,从而可以求出恰好是两位男生分享心得的概率【详解】解:(1)本次共抽查学生1428%=50(人),故答案为:50;50-9-14-7-416(人),补全的条形统计图如图所示,(2)(人),即读书15本及以上(含15本)的学生估计有500人(3)树状图如下图所示,一共有12种可能性,其中恰好是两位男生可能性有2种,故恰好是两位男生分享心得的概率是【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想
22、解答3、(1)100,30;(2)见解析;(3)0.55【分析】(1)根据频数分布直方图中组的人数除以扇形统计图中组的所占百分比即可求得总人数,根据总人数减去组的人数即可求得组的人数,除以总人数即可求得的值;(2)根据(1)中的结论补全统计图即可;(3)根据身高高于160cm除以总人数即可求得随机抽取1名学生,估计这名学生身高高于160cm的概率【详解】解:(1)总人数为:;组的人数为故答案为:(2)如图,(3)总人数为,身高高于160cm为随机抽取1名学生,估计这名学生身高高于160cm的概率为【点睛】本题考查了频数直方图和扇形统计图信息关联,简单概率计算,从统计图中获取信息是解题的关键4、
23、(1);(2)【分析】(1)根据概率公式即可求解;(2)由题画出树状图,用小红和小雨被分到同一组的结果数比总的结果数即可得出答案【详解】(1)小雨可分配到A、B、C三个项目组,小雨被分配到C“五公里”项目组的概率为,故答案为:;(2)画出树状图如下所示:小红和小雨被分到同一组的有3种结果,总的有9种,小红和小雨被分到同一组的概率为【点睛】本题考查用列表格或树状图求概率,掌握树状图的画法和概率的求法是解题的关键5、(1)(2)(3)【分析】(1)根据众数和中位数的概念求解可得;(2)用总人数乘以样本中七、八年级不低于9分的学生人数和所占比例即可得,(3)根据列表法求概率即可(1)根据抽取的20名七年级学生的成绩找到第10个和第11个成绩都是8,则中位数为8,即,根据条形统计图可知9分的有6人,人数最多,则众数为9,即(2)解:此次测试成绩不低于9分的七年级学生有8人,八年级学生有9人此次测试成绩不低于9分的学生有(人)(3)解:七年级得10分的有2人,八年级得10分的有3人设七年级的2人分别为,八年级的3人分别列表如下,根据列表可知,共有20种等可能结果,其中1名七年级学生和1名八年级学生的情形有12钟则所抽取的2名学生恰好是1名七年级学生和1名八年级学生的概率为【点睛】本题考查了求中位数,众数,根据样本估计总体,列表法求概率,掌握以上知识是解题的关键