《2022年精品解析北师大版八年级数学下册第六章平行四边形重点解析试卷(精选).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版八年级数学下册第六章平行四边形重点解析试卷(精选).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一只蚂蚁从点A出发沿直线前进5m,到达点B后,向左转角度,再沿直线前进5m,到达点C后,又向左转角度,照
2、这样爬下去,第一次回到出发点,蚂蚁共爬了60m,则每次向左转的度数为( )A30B36C40D602、如图,在平行四边形 ABCD 中,BC2AB8,连接 BD,分别以点B,D为圆心,大于BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H,点H恰为BC的中点,连接AH,则AH的长为( )AB6C7D43、一个多边形纸片剪去一个内角后,得到一个内角和为2340的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或174、在下列条件中能判定四边形ABCD是平行四边形的是( )AAB=BC,AD=DCBABCD,AD=BCCABCD,B=
3、DDA=B,C=D5、已知一个多边形的外角都等于,那么这个多边形的边数为( )A6B7C8D96、四边形中,如果,则的度数是( )A110B100C90D307、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D48、n 边形的每个外角都为 15,则边数 n 为( )A20B22C24D269、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直
4、的四边形10、如图,在RtABC中,ACB90,AC1,AB4,点D是斜边AB的中点,以CD为底边在其右侧作等腰三角形CDE,使CDEA,DE交BC于点F,则EF的长为()A3BCD3.5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平面直角坐标系中,有,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为_2、一个多边形的内角和为1080,则它是_边形3、已知一个多边形内角和1800度,则这个多边形的边数_4、如图,是三角形ABC的不同三个外角,则_5、如图,在四边形ABCD中,ABBCBD,ABC110,则ADC的度数为 _三、解答题(5小题,每小
5、题10分,共计50分)1、如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如下图所示就是一组正多边形(1)观察上面每个正多边形中的a,填写下表:正多边形边数456.na的度数 . (2)是否存在正n边形使得a12?若存在,请求出n的值;若不存在,请说明理由2、一个多边形的内角和是外角和的2倍,求这个多边形的边数3、一个多边形的内角和比它的外角和的4倍多180,求这个多边形的边数和它的内角和4、(教材呈现)如图是华师版九年级上册数学教材第77页的部分内容(定理证明)(1)请根据教材内容,结合图,写出证明过程(定理应用)(2)如图,四边形中,、分别为、的中点,边、延长线交于
6、点,则的度数是_(3)如图,矩形中,点在边上,且将线段绕点旋转一定的角度,得到线段,是线段的中点,直接写出旋转过程中线段长的最大值和最小值5、如图,在中,为内部的一动点(不在边上),连接,将线段绕点逆时针旋转60,使点到达点的位置;将线段绕点顺时针旋转60,使点到达点的位置,连接,(1)求证:;(2)当取得最小值时,求证:(3)如图,分别是,的中点,连接,在点运动的过程中,请判断的大小是否为定值若是,求出其度数;若不是,请说明理由-参考答案-一、单选题1、A【分析】蚂蚁第一次回到出发点,爬行路线是一个多边形,是这个多边形的外角,根据正多边形的外角和定理即可得出答案【详解】解:蚂蚁爬行路线是一个
7、多边形,边数是,由于每个外角都相等,所以 ,故选:A【点睛】本题主要考查正多边形外角和定理,解题关键是要牢记多边形的外角和为3602、A【分析】连接DH,根据作图过程可得EF是线段BD的垂直平分线,证明DHC是等边三角形,然后证明AHD=90,根据勾股定理可得AH的长【详解】解:如图,连接DH,根据作图过程可知:EF是线段BD的垂直平分线,DH=BH,点H为BC的中点,BH=CH,BC=2CH,DH=CH,在ABCD中,AB=DC,AD=BC=2AB=8,DH=CH=CD=4,DHC是等边三角形,C=CDH=DHC=60,在ABCD中,BAD=C=60,ADBC,DAH=BHA,AB=BH,B
8、AH=BHA,BAH=DAH=30,AHD=90,AH=故选:A【点睛】本题考查了作图-基本作图,线段垂直平分线的性质,等边三角形的判定和性质,平行四边形的性质,勾股定理等知识点,解决本题的关键是掌握线段垂直平分线的作法3、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180=2340,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】
9、本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180(n为边数)是解题的关键4、C【分析】根据两组对角分别相等的四边形是平行四边形进行判断即可【详解】解:能判定四边形ABCD是平行四边形的是ABCD,B=D,理由如下:ABCD,B+C=180,B=D,D+C=180, ADBC,四边形ABCD是平行四边形,故选:C【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键5、D【分析】根据多边形外角公式,代入角度求出n即可【详解】外角故多边形边数为9故选D【点睛】本题考查多边形外角公式,掌握该公式是本题解题关键6、C【分析】根据四边形内角和是360进行求解即可
10、【详解】解:四边形的内角和是360,故选:C【点睛】本题考查四边形的内角和,是基础考点,难度较易,掌握相关知识是解题关键7、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和E
11、CG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键8、C【分析】根据多边形的外角和等于360度得到15n360,然后解方程即可【详解】解:n边形的每个外角都为15,15n360,n24故选C【点睛】本题考查了多边形外角和,熟练掌握多边形外角和为360度是解题的关键9、B【分析】根据完全平方公式分解因式得到a=b,c
12、=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键10、D【分析】根据勾股定理求出BC,根据直角三角形的性质得到CD=AD,证明ACDF,根据勾股定理计算,得到答案【详解】解:在RtABC中,ACB=90,AC=1,AB=4,则BC=,在RtABC中,ACB=90,点D是斜边AB的中点,CD=AB=AD,DCA=A,CDE=A,CDE=DCA,ACDF,EFC=ACB=90,A
13、CDF,点D是斜边AB的中点,DF=AC=,CF=BC=,设EF=x,则ED=x+=CE,在RtEFC中,EC2=EF2+CF2,即(x+)2=x2+()2,解得:x=3.5,即EF=3.5,故选:D【点睛】本题考查的是勾股定理、直角三角形的性质,等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2二、填空题1、(9,4)、(-3,4)、(3,-4)【分析】根据平行四边形的性质得出AD=BO=6,ADBO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标【详解】平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0
14、)、(0,0),AD=BO=6,ADBO,D的横坐标是3+6=9,纵坐标是4,即D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4)故答案为:(9,4)、(-3,4)、(3,-4)【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等2、八【分析】根据多边形的内角和公式求解即可n边形的内角的和等于: (n大于等于3且n为整数)【详解】解:设该多边形的边数为n,根据题意,得,解得,这个多边形为八边形,故答案为:八【点睛】此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式3、12【分析】设这个多边形的边数为n,根据多边形的内角和定理得到
15、,然后解方程即可【详解】解:设这个多边形的边数是n,依题意得,故答案为:12【点睛】考查了多边形的内角和定理,关键是根据n边形的内角和为解答4、360【分析】利用三角形的外角和定理解答【详解】解:是三角形ABC的不同三个外角,三角形的外角和为360,1+2+3=360,故答案为:360【点睛】本题主要考查了三角形的外角和定理,三角形的外角的性质,属于中考常考题型5、125125度【分析】利用等腰三角形的性质和四边形内角和定理可得答案【详解】ABBCBD,AADB,BDCC,A+ADB+C+BDC+ABD+CBD360,2ADB+2CDB+ABC360,2(ADB+CDB)+110360,ADB
16、+CDB125,即ADC125,故答案为:125【点睛】考查等腰三角形的性质以及四边形的内角和,掌握等腰三角形的性质是解题的关键三、解答题1、(1);(2)存在,15【分析】(1)根据正多边形的外角和,求得内角的度数,根据等腰三角形性质和三角形内角和定理即可求得的度数;(2)根据(1)的结论,将代入求得的值即可【详解】解:(1)正多边形的每一个外角都相等,且等于则正多边形的每个内角为,根据题意,正多边形的每一条边都相等,则所在的等腰三角形的顶角为:,另一个底角为,当时,当时,当时,故答案为:(2)存在设存在正n边形使得,解得【点睛】本题考查了正多边形的外角和与内角的关系,等腰三角形的性质和三角
17、形内角和定理,根据正多边形的外角与内角互补求得内角是解题的关键2、这个多边形的边数是6【分析】根据多边形的外角和为360,内角和公式为:(n-2)180,由题意可知:内角和=2外角和,设出未知数,可得到方程,解方程即可【详解】解:设这个多边形是n边形,由题意得:(n-2)180=3602,解得:n=6这个多边形的边数是6【点睛】此题主要考查了多边形的外角和,内角和公式,解一元一次方程,做题的关键是正确把握内角和公式为:(n-2)180,外角和为3603、多边形的边数为,它的内角和为【分析】设多边形的变数为:,根据多边形内角和和外角和的性质,通过列一元一次方程并求解,即可完成求解【详解】设多边形
18、的变数为:多边形的内角和为:,多边形的内角和为: 根据题意,得: 多边形的内角和为:【点睛】本题考查了多边形内角和、多边形外角和、一元一次方程的知识;解题的关键是熟练掌握多边形内角和、多边形外角和的性质,从而完成求解4、(1)见解析;(2);(3)长的最大值为,最小值为【分析】(1)延长至,使,连接,根据题意证明,然后证明四边形为平行四边形,即可得出,;(2)首先根据三角形外角的性质得到,然后由三角形中位线的性质得到,可得到,由即可求出的度数(3)延长至,使,连接,可得,可得当FH最小或最大时,MB最小或最大,由题意可得当点在线段上时,最小,当点在线段的延长线上时,最大,根据勾股定理求出AH的
19、长度,然后即可求出线段长的最大值和最小值【详解】(1)证明:延长至,使,连接,在和中,四边形为平行四边形,;(2)、分别为、的中点,是DAB的中位线,是BCD的中位线,又,;(3)解:延长至,使,连接,由勾股定理得,当点在线段上时,最小,最小值为,当点在线段的延长线上时,最大,最大值为,长的最大值为,最小值为【点睛】此题考查了三角形中位线的性质,勾股定理的运用,线段最值问题,平行四边形的判定和性质,解题的关键是熟练掌握三角形中位线的性质,平行四边形的判定和性质,勾股定理5、(1)见详解;(2)见详解;(3),理由见详解【分析】(1)由旋转知,、,故由证出全等即可;(2)由题意可知为等边三角形得,再由、共线时最小,最后,即证;(3)由中位线定理知道,由得,即,再设,则,得,得【详解】(1)证明:,在与中,;(2)证明:,为等边三角形,即,、共线时最小,;(3)的大小是为定值,理由:如图,连接,分别是,的中点,且,为等边三角形,设,则,【点睛】本题是三角形旋转变换综合题,考查了全等的判定与性质,两点之间,线段最短,勾股定理,等边三角形的判定与性质,平行线的判定,中位线定理,两点之间,线段最短求线段和最小值、用好全等三角形性质导角是证明平行及角度不变的关键