《2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数定向训练试卷(精选含详解).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数定向训练试卷(精选含详解).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、16的平方根是()A8B8C4D42、已知a,b|,c(2)3,则a,b,c的大小关系是( )AbacB
2、bcaCcbaDacb3、观察下列算式:212,224,238,2416,2532,2664,27128,28256,根据上述算式中的规律,你认为2810的末位数字是()A2B4C8D64、下列计算正确的是( )ABCD5、下列四个数中,最小的数是( )A3BC0D6、计算2130( )AB1C1D7、下列各数中,最小的数是( )A0BCD38、如图,数轴上的点A,B,O,C,D分别表示数,0,1,2,则表示数的点P应落在( )A线段AB上B线段BO上C线段OC上D线段CD上9、在3,0,2,这组数中,最小的数是()AB3C0D210、下列说法正确的是( )A是的平方根B是的算术平方根C2是-
3、4的算术平方根D的平方根是它本身第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若a、b为实数,且满足|a-3|+=0,则a-b的值为_2、 “平方根节”是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如:2009年的3月3日,2016年的4月4日请写出你喜欢的一个“平方根节”(题中所举的例子除外)_年_月_日3、已知x,y是实数,且(y3)20,则xy的立方根是_4、计算:_5、已知(xy+3)2+0,则(x+y)2021_三、解答题(10小题,每小题5分,共计50分)1、已知正数a的两个不同平方根分别是2x2和63x,a4b的算术平
4、方根是4(1)求这个正数a以及b的值;(2)求b2+3a8的立方根2、已知a216,b327,求ab的值3、计算题(1);(2)(1)20214、计算:5、已知a,b,c,d是有理数,对于任意,我们规定:例如:根据上述规定解决下列问题:(1)_;(2)若,求的值;(3)已知,其中是小于10的正整数,若x是整数,求的值6、求方程中x 的值(x1)2 16 = 07、计算:(1)18+(17)+7+(8);(2)(12);(3)22+|1|+8、计算:(1)(2)9、计算:(1); (2)10、已知是正数的两个平方根,且,求值,及的值-参考答案-一、单选题1、D【分析】根据平方根可直接进行求解【详
5、解】解:(4)216,16的平方根是4故选:D【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键2、C【分析】本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较【详解】解:由题意得:a=,b=,c-8,cba故选:C【点睛】本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键3、B【分析】经过观
6、察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6用81042022,余数是2故可知,末尾数是4【详解】2n的个位数字是2,4,8,6循环,所以81042022,则2810的末位数字是4故选:B【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键4、D【分析】由负数没有算术平方根可判断A,由算术平方根不可能是负数可判断B,C,由立方根的含义可判断D,从而可得答案.【详解】解:没有意义,故A不符合题意;,故B不符合题意;,故C不符合题意;,运算正确,故D符合题意;故选D【点睛】本题考查的是
7、算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.5、D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可【详解】解:,最小的数是,故选D【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0负实数,两个负实数绝对值大的反而小6、D【分析】利用负整数指数幂和零指数幂的意义进行化简计算即可【详解】解:原式1故选:D【点睛】本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键7
8、、C【分析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】解:,所给的各数中,最小的数是故选:C【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小8、B【分析】根据,得到,根据数轴与实数的关系解答【详解】解:,表示的点在线段BO上,故选:B【点睛】本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键9、B【分析】先确定3与的大小,再确定四个数的大小顺序,由此得到答案【详解】解:97,3,-3,-302,故选:B【点
9、睛】此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键10、A【分析】根据平方根的定义及算术平方根的定义解答【详解】解:A、是的平方根,故该项符合题意;B、4是的算术平方根,故该项不符合题意;C、2是4的算术平方根,故该项不符合题意;D、1的平方根是,故该项不符合题意;故选:A【点睛】此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键二、填空题1、2【分析】根据非负性的性质解答,当两个非负数相加,和为0时,必须满足其中的每一项都等于0【详解】解:|a-3|+=0,a-3=0,b-1=0,a=3,b=1,a-b=3-1=2故答案为2【点睛】本题考查了非负数的性质
10、,涉及绝对值的性质,算术平方根的性质,有理数的减法掌握几个非负数的和为0时,这几个非负数都为0是解题的关键2、2025 5 5 【分析】首先确定月份和日子,最后确定年份即可(答案不唯一)【详解】解:2025年5月5日(答案不唯一)故答案是:2025,5,5【点睛】本题考查了平方根的应用,解题的关键是正确理解三个数字的关系3、【分析】根据二次根式和平方的非负性,可得 ,即可求解【详解】解:根据题意得: ,解得: , 故答案为:【点睛】本题主要考查了二次根式和平方的非负性,立方根的性质,熟练掌握二次根式和平方的非负性,立方根的性质是解题的关键4、1【分析】根据算术平方根的计算方法求解即可【详解】解
11、:故答案为:1【点睛】此题考查了求解算术平方根,解题的关键是熟练掌握算术平方根的计算方法5、1【分析】由(xy+3)2+0,可得方程组,再解方程组,代入代数式计算即可得到答案.【详解】解: (xy+3)2+0, 解得: 故答案为:1【点睛】本题考查的是偶次方与算术平方根的非负性,掌握“若 则”是解题的关键.三、解答题1、(1),;(2)b2+3a8的立方根是5【分析】(1)根据题意可得,2x2+63x0,即可求出a36,再根据a4b的算术平方根是4,求出b的值即可;(2)将(1)中所求a、b的值代入代数式b2+3a8求值,再根据立方根定义计算即可求解【详解】解:(1)正数a的两个不同平方根分别
12、是2x2和63x,2x2+63x0,x4,2x26,a36,a4b的算术平方根是4,a4b16,36-4b=16b5;(2)当a=36,b=5时,b2+3a825+3638125,b2+3a8的立方根是5【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键2、64或64【分析】根据平方根、立方根、有理数的乘方解决此题【详解】解:a216,b327,a4,b3当a4,b3时,ab4364当a4,b3时,ab(4)364综上:ab64或64【点睛】本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题
13、的关键3、(1)22;(2)4【分析】(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;(2)原式利用乘方的意义,算术平方根定义计算即可得到结果【详解】解:(1)原式22|4|22422;(2)原式154【点睛】本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键4、-10【分析】根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算【详解】解:, , 【点睛】本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值5、(1)-5(2)(3)k=1,4,7【分析】(1)根据规定代入数据求解即可;(2)根据规定代入
14、整式,利用方程的思想求解即可;(3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值(1)解:;(2)解:即:(3)解:,即:因为是小于10的正整数且x是整数,所以k=1时,x=3;k=4时,x=4;k=7时,x=5所以k=1,4,7【点睛】本题考查新定义问题新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法6、或【分析】根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“”(a称为被开方数)【详解】解:(x1)2 16 = 0或解
15、得或【点睛】本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键7、(1)0;(2)1;(3)【分析】(1)根据有理数的加法计算法则求解即可;(2)根据有理数的乘法分配律求解即可;(3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可【详解】解:(1) ;(2);(3)【点睛】本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键8、(1);(2)【分析】(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可【详解】解:(1)=;(2) =【点睛】本题主
16、要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键9、(1)1;(2)2【分析】(1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;(2)根据同分母分式的加减法法则计算【详解】解:(1)原式122 1(2)原式 2【点睛】此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键10、, ,【分析】根据正数的平方根有2个,且互为相反数,以及求出与的值即可【详解】解:因为,是正数的两个平方根,可得:,把代入,解得:,所以,所以【点睛】此题考查了平方根,明确一个正数的两个平方根互为相反数,和为0是解题的关键