《2022年强化训练京改版九年级数学下册第二十三章-图形的变换专题练习试卷(精选含答案).docx》由会员分享,可在线阅读,更多相关《2022年强化训练京改版九年级数学下册第二十三章-图形的变换专题练习试卷(精选含答案).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,点为边上一点,将沿直线翻折得到,与边交于点E,若,点为中点,则的长为( )AB6CD2、下列图形既是
2、轴对称图形又是中心对称图形的是( )A等边三角形B双曲线C抛物线D平行四边形3、下列图形中,不是位似图形的是( )ABCD4、如图,将绕点按顺时针旋转一定角度得到,点的对应点点恰好落在边上,若,则的长为( )A3B2CD15、在平面直角坐标系中,点P(2,5)关于y轴对称的点的坐标为()A(2,5)B(2,5)C(2,5)D(5,2)6、如图,E是正方形ABCD中CD边上的点,以点A为中心,把ADE顺时针旋转,得到ABF下列角中,是旋转角的是( )ADAEBEABCDABDDAF7、下列图案中既是轴对称图形,又是中心对称图形的是( )ABCD8、以下是四个我国杰出企业代表的标志,其中是轴对称图
3、形的是( )ABCD9、点向上平移2个单位后与点关于y轴对称,则( )A1BCD10、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点与点关于x轴对称,则的值为_2、如图,在RtABC中,ACB90,BAC30,BC6,将ABC绕点C顺时针旋转30得到ABC,A、B分别与A、B对应,CA交AB于点M,则CM的长为 _3、如图,AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P25cm,则PMN的周长是_4、若点(1,m)与点(n,2)关于y轴对称,则的值为_5、
4、如图,中,D,E分别为AC,AB边上的点,将沿DE翻折,点A恰好与点B重合,若,则_三、解答题(5小题,每小题10分,共计50分)1、抛物线yax2bx2(a0)与x轴交于点A(1,0),B(3,0),与y轴交于点C(1)求抛物线的解析式;(2)如图1,抛物线的对称轴与x轴相交于点H,连接AC,BCABC绕点B顺时针旋转一定角度后落在第一象限,当点C的对应点C1落在抛物线的对称轴上时,求此时点A的对应点A1的坐标;(3)如图2,过点C作轴交抛物线于点E,已知点D在抛物线上且横坐标为,在y轴左侧的抛物线上有一点P,满足PDCEDC,求点P的坐标2、如图在平面坐标系中,的三个顶点的坐标分别是,(1
5、)将向右平移三个单位长度得到,在平面直角坐标系中做出(2)以原点O为位似中心,在第一象限内将放大为原来的2倍得到,做出3、如图,点O,B的坐标分别是(0,0),(3,0)将OAB绕点O逆时针旋转90,得到OA1B1(1)画出平面直角坐标系和三角形OA1B1;(2)求旋转过程中点B走过的路径的长4、如图,ABC的顶点都在网格点上,点M的坐标为(0,1)(1)以点M为位似中心,把ABC按3:1放大,在第二象限得到A1B1C1,画出A1B1C1;(2)若ABC的周长为m,面积为n,则上述所画的A1B1C1的周长为 ,面积为 5、尝试:如图,中,将绕点A按逆时针方向旋转一定角度得到,点B、C的对应点分
6、别为、,连接、,直接写出图中的一对相似三角形_;拓展:如图,在中,将绕点A按逆时针方向旋转一定角度得到,点B、C的对应点分别为、,连接、,若,求的长;应用:如图,在中,将绕点A按逆时针方向旋转一周,在旋转过程中,当点B的对应点恰好落在的边所在的直线上时,直接写出此时点C的运动路径长-参考答案-一、单选题1、A【分析】由折叠的性质可得,然后证明,得到,设,即可推出,从而得到,则,从而得到,再由,求解即可【详解】解:由折叠的性质可得,AB=AC,B=C,又,E是CD的中点,DE=CE,设,解得,故选A【点睛】本题主要考查了等腰三角形的性质,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练
7、掌握相似三角形的性质与判定条件2、B【分析】根据“如果一个平面图形沿一条直线折叠,直线两旁部分能够互相重合,那么这个图形就叫做轴对称图形”及“把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形”,结合二次函数的图象及反比例函数的图象,进而问题可求解【详解】解:A、等边三角形是轴对称图形,但不是中心对称图形,故不符合题意;B、双曲线是中心对称图形,也是轴对称图形,故符合题意;C、抛物线是轴对称图形,但不是中心对称图形,故不符合题意;D、平行四边形是中心对称图形但不是轴对称图形,故不符合题意;故选B【点睛】本题主要考查轴对称图形、中心对称图形及二
8、次函数的图象、反比例函数的图象,熟练掌握轴对称图形、中心对称图形及二次函数的图象、反比例函数的图象是解题的关键3、D【分析】对应顶点的连线相交于一点的两个相似多边形叫位似图形【详解】解:根据位似图形的概念,A、B、C三个图形中的两个图形都是位似图形;D中的两个图形不符合位似图形的概念,两个三角形不相似,故不是位似图形故选D【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点4、B【分析】由直角三角形的性质可得AB2,BC2AB4,由旋转的性质可得ADAB,可证ADB是等边三角形,可得BDAB2,即可求解
9、【详解】解:,BAC90C=90-BC2ABBC2=AC2+AB2AB2,BC2AB4,RtABC绕点A按顺时针旋转一定角度得到RtADE,ADAB,且B60ADB是等边三角形BDAB2,CDBCBD422故选:B【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键5、C【分析】关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变,根据原理直接可得答案.【详解】解:点P(2,5)关于y轴对称的点的坐标为: 故选:C【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标互为相反数,纵坐标不变”是解本题的
10、关键.6、C【分析】根据“旋转角是指以图形在作旋转运动时,一个点与中心的旋转连线,与这个点在旋转后的对应点与旋转中心的连线,这两条线的夹角”,由此问题可求解【详解】解:由题意得:旋转角为DAB或EAF,故选C【点睛】本题主要考查旋转角,熟练掌握求一个旋转图形的旋转角是解题的关键7、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符
11、合题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键8、B【详解】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键9、D【分析】利用平移及关于y轴对称点的性质即
12、可求解【详解】解:把向上平移2个单位后得到点 ,点与点关于y轴对称, , , ,故选:D【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂10、B【分析】根据轴对称图形(一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称)和中心对称图形(指把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称)的概念对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项符合题意;C不是轴对称图形,是中
13、心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】题目主要考查轴对称与中心对称图形的识别,理解这两个定义是解题关键二、填空题1、5【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a与b的值,再代入计算即可【详解】解:点与点关于x轴对称,则,故答案为【点睛】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律2、【分析】根据旋转的性质可得,所以,由题意可得:,为等边三角形,即可求解【详解】解:,由旋转的性质可得,为等边三角形,故答案为:【点睛】此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,
14、解题的关键是灵活掌握相关基本性质进行求解3、5cm【分析】根据轴对称的性质得到PMMP1,PNNP2,然后等量代换可得PMN的周长为P1P2【详解】解:AOB内一点P,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于M,交OB于N,OA、OB分别是P与P1和P与P2的对称轴PMMP1,PNNP2;P1M+MN+NP2PM+MN+PNP1P25cm,PMN的周长为5cm故填5cm【点睛】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等4、3【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互
15、为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点(1,m)与点(n,2)关于y轴对称,;故答案为:3【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数5、故答案为1: 【点睛】本题考查锐角三角函数,勾股定理,折叠性质,三角形全等判定与性质,矩形判定与性质,三角形相似判定与性质,线段的比,掌握锐角三角函数,勾股定理,折叠性质,三角形全等判定与性质,矩形判定与性质,三角形相似判定与性质,线段的比是解题关键46【分析】由翻折的性质可得:ABD=A
16、=30,AED=BED=90,从而可证BD平分ABC,由角平分线的性质即可得到DE=CD=3,则AD=2DE=6【详解】解:由翻折的性质可得:ABD=A=30,AED=BED=90,C=90,A=30,ABC=60,CBD=30,ABD=CBD,BD平分ABC,又DEB=C=90,DE=CD=3,AD=2DE=6,故答案为:6【点睛】本题主要考查了折叠的性质,角平分线的性质,含30度角的直角三角形的性质,熟知相关知识是解题的关键三、解答题1、(1);(2)(3,4);(3)(,)【分析】(1)把A(1,0),B(3,0)代入抛物线解析式利用待定系数法求解二次函数的解析式即可;(2)如图,先求解
17、C(0,2),对称轴为直线,可得BHCO2结合旋转得BC1BC ,证明RTBC1HRTCBO(HL),再证明旋转角A1BAC1BC90,从而可得答案;(3)先求解D(,),E(2,2),如图,过点D作DGCE交CE的延长线于点G,证明CGDG,可得ECDGDC45 ,如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P,证明QCDECD,可得QCEC2,可得Q(0,0),再求解直线DQ的解析式为,联立 ,再解方程组可得答案.【详解】解:(1)将A(1,0),B(3,0)代入抛物线解析式得 解得 抛物线的解析式为(2)抛物线的解析式为,A(1,0),B(3,0)C(0,2),对称轴为直线
18、 BHCO2由旋转得BC1BC 则RTBC1HRTCBO(HL) C1BHBCOC1BCC1BHOBCBCOOBC90旋转角A1BAC1BC90,即A1Bx轴 A1BBA4,B(3,0)A1(3,4)(3)抛物线的解析式为,D的横坐标为当x时,y,则D(,)轴,C(0,2),对称轴为直线x1E(2,2) 如图,过点D作DGCE交CE的延长线于点G, CGDG,ECDGDC45 如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P轴 ,QCE90QCDECD45CDCD,QCDECD(ASA)QCEC2,C(0,2),Q(0,0)D(,),设直线 解得: 直线DQ的解析式为则 ,消去得:
19、 解得: 当时, 当时, 所以方程组的解为:或,【点睛】本题考查的是全等三角形的判定与性质,利用待定系数法求解二次函数的解析式,旋转的性质,求解一次函数与二次函数的交点坐标,作出适当的辅助线构建全等三角形,再利用全等三角形的性质证明相等的线段,再得到点的坐标是解本题的关键.2、(1)见解析;(2)见解析【分析】(1)根据点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(2)把点A、B、C的横纵坐标都乘以2得到点A2、B2、C2的坐标,然后描点即可【详解】解:(1)平移后坐标为 ,如图所示,三角形为求作图形;(2)以原点O为位似中心,在第一象限内将放大为原来的2倍则 如图所示,三
20、角形为求作图形【点睛】本题考查了作图位似变换、平移变换,解题关键是找到对应点,顺次连接得出图形3、(1)见解析;(2)【分析】(1)根据点O的坐标确定直角坐标系,根据旋转的性质确定点A1、B1,顺次连线即可得到OA1B1;(2)利用弧长公式计算即可【详解】解:(1)如图,OA1B1即为所求三角形;(2)旋转过程中点B走过的路径的长=【点睛】此题考查了旋转作图,弧长的计算公式,正确掌握旋转的性质及弧长的计算公式是解题的关键4、(1)图见详解;(2)3m,9n【分析】(1)利用位似变换的性质分别作出,的对应点,即可(2)根据相似三角形的性质及位似可直接进行求解【详解】解:(1)如图,即为所求(2)
21、ABC按3:1放大,在第二象限得到A1B1C1,ABCA1B1C1,ABC的周长为m,面积为n,A1B1C1的周长为3m,面积为9n;故答案为3m,9n【点睛】本题主要考查位似及相似三角形的性质,熟练掌握位似及相似三角形的性质是解题的关键5、尝试:;拓展:;应用:点的运动路径长为或或或或【分析】尝试:根据是由ABC旋转得到的,可得到,即可推出,则;拓展:由AC=BC,ACB=90,可得,同(1)可证,得到,由此求解即可;应用:分点在延长线上时,点在的延长线上时,当点落在边所在直线上时,当点落在边所在直线上时,当点与点重合时,点旋转一周时,五种情况讨论求解即可得到答案【详解】解:尝试:,理由如下
22、:是由ABC旋转得到的,即,;故答案为:;拓展:AC=BC,ACB=90,同(1)原理可证,;应用:在中,当点落在所在直线上时,有两种情况:若点在延长线上时,如图所示:由旋转的旋转可得:,点C运动的路径即为,;若点在的延长线上时,如图所示,此时点,三点共线,点C运动的路径即为,由旋转的性质可得,旋转角,弧;当点落在边所在直线上时,如图所示,点C运动的路径即为,由旋转的性质可得,弧;当点落在边所在直线上时,如图所示,此时点,三点共线,旋转角为,弧当点与点重合时,点旋转一周,弧当点的对应点恰好落在的边所在直线上时,点的运动路径长为或或或或【点睛】本题主要考查了旋转的性质,求弧长,相似三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握相似三角形的性质与判定条件,以及弧长公式