《2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转专题练习练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练北师大版八年级数学下册第三章图形的平移与旋转专题练习练习题(含详解).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是( ) A等边三角形B平行四边形C正五边形D正六边形2、如图,将A
2、BC绕点A按逆时针方向旋转得到使点恰好落在BC边上,BAC120,则C的度数为()A18B20C24D283、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A先向左平移4个单位长度,再向上平移4个单位长度B先向左平移4个单位长度,再向上平移8个单位长度C先向右平移4个单位长度,再向下平移4个单位长度D先向右平移4个单位长度,再向下平移8个单位长度4、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致下列窗户图案中,是中心对称图形的是( )ABCD5、下列图案中既是轴对称图形又是中心对称图形的是( )ABCD6、点P(3,1)关于原点对称的
3、点的坐标是( )A(3,1)B(3,1)C(3,1)D(3,1)7、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD8、下列图中,既是轴对称图形又是中心对称图形的是()ABCD9、下列图形中不是中心对称图形的是( )ABCD10、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是( )A(3,2)B(3,2)C(2,3)D(2,3)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点关于原点对称的点的坐标是_2、若点P(m1,5)与点Q(3,n)关于原点成中心对称,则mn的值是_3、如图,一次函数y2x4的图像与坐标轴分
4、别交于A、B两点,把线段AB绕点A逆时针旋转90,点B落在点B处,则点B的坐标是_4、若点与点关于原点对称,则的值为_5、已知点P(a3,7)关于原点对称的点在第四象限,则a的取值范围是 _三、解答题(5小题,每小题10分,共计50分)1、如图,在66的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上请按要求在图,图,图中画图:(1)在图中,画等腰ABC,使AB为腰,点C在格点上(2)在图中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上(3)在图中,画ABC,使ACB=90,面积为5,点C在格点上2、图中的小方格都是
5、边长为1的正方形,ABC的顶点和O点都在正方形的顶点上(1)以点O为位似中心,在方格图中将ABC放大为原来的2倍,得到;(2)将绕点顺时针旋转90,画出旋转后得到的;(3)在(2)的旋转过程中,求:点的运动路径长为 ,边扫过的区域面积为 (写出解答过程,结果保留)3、如图所示,在平面直角坐标系中,已知,(1)在平面直角坐标系中画出,并求出的面积;(2)在(1)的条件下,把先关于y轴对称得到,再向下平移3个单位得到,则中的坐标分别为( ),( ),( );(直接写出坐标)(3)已知为轴上一点,若的面积为4,求点的坐标4、如图在的正方形网格中,每个小正方形的顶点称为格点点A,点B都在格点上,按下列
6、要求画图(1)在图中,AB为一边画,使点C在格点上,且是轴对称图形;(2)在图中,AB为一腰画等腰三角形,使点C在格点上;(3)在图中,AB为底边画等腰三角形,使点C在格点上5、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影(1)请在下面三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);(2)在两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同)-参考答案-一、单选题1、D【分析】根据轴对称图形,中心对称图形的定义去判断即可【详解】等边三角形是轴对称
7、图形,不是中心对称图形,A不符合题意;平行四边形不是轴对称图形,是中心对称图形,B不符合题意;正五边形是轴对称图形,不是中心对称图形,C不符合题意;正六边形是轴对称图形,也是中心对称图形,D符合题意;故选D【点睛】本题考查了轴对称图形,中心对称图形的定义,轴对称图形即将一个图形沿着某条直线折叠,直线两旁的部分完全重合,中心对称图形即将一个图形绕某点旋转180后与原图形完全重合,熟练掌握两种图形的定义是解题的关键2、B【分析】由,根据等边对等角可得C=CAB,个三角形的外角的性质可得,ABB=C+CAB=2C,由旋转的性质可得AB=AB,进而可得B=ABB=2C,根据三角形的内角和定理可得B+C
8、+CAB=180,进而求得C=20.【详解】解:AB=CB,C=CAB,ABB=C+CAB=2C,旋转得AB=AB,B=ABB=2C,B+C+CAB=180,3C=180-120,C=20.故选B【点睛】本题考查旋转的性质以及等腰三角形的性质,灵活运用这些的性质解决问题是解答本题的关键3、B【分析】利用平移中点的变化规律求解即可【详解】解:在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),点的横坐标减少4,纵坐标增加8,先向左平移4个单位长度,再向上平移8个单位长度故选:B【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相
9、应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度4、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中
10、心5、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形6、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直
11、接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1)故选:C【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形7、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么
12、这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键8、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,也不是中心对称图形故本选项不合题意;B、是轴对称图形,不是中心对称图形故本选项不合题意;C、不是轴对称图形,是中心对称图形故本选项不合题意;D、既是轴对称图形又是中心对称图形故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合9、B【分
13、析】根据中心对称图形的概念求解【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意故选:B【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形10、A【分析】根据点F点N关于原点对称,即可求解【详解】解:F点与N点关于原点对称,点F的坐标是(3,2),N点坐标为(3,2)故选:A【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键二、填空题1、
14、 (3,8)【分析】根据关于原点对称的点的坐标特征即可完成【详解】点关于原点对称的点的坐标是(3,8)故答案为:(3,8)【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,一般地,两点关于原点对称,则其横坐标与纵坐标分别互为相反数,掌握这点是关键2、9【分析】根据关于原点对称点的坐标特征求出、的值,再代入计算即可【详解】解:点与点关于原点成中心对称,即,故答案为:9【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数3、(4,6)【分析】过作轴,证明,求得线段、,即可求解【详解】解:过作轴,如下图:时,时,即,由
15、题意可得:,又,即故答案为:【点睛】此题考查了一次函数的性质,全等三角形的判定与性质,旋转的性质,解题的关键是灵活运用相关性质进行求解4、-4【分析】根据关于原点对称的点的横坐标和纵坐标都互为相反数解答【详解】解:由点与点关于原点对称,可得n1,故答案为:4【点睛】本题考查了关于原点对称的点的坐标的特征:横坐标和纵坐标都互为相反数5、a3【分析】直接利用关于原点对称点的性质以及第四象限内点的坐标特点得出关于a的不等式组进而得出答案【详解】解:点P(a3,7)关于原点对称的点(a+3,-7)在第四象限,解得a3,故答案为:a3【点睛】此题主要考查了关于原点对称点的性质以及解一元一次不等式组,关键
16、是掌握各象限内点的坐标符号三、解答题1、(1)见解析;(2)见解析;(3)见解析【分析】(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);(2)作边长为2,高为4的平行四边形即可;(3)根据(1)的结论,作BG边的中线,即可得解【详解】解:(1)如图中,ABC即为所求作(答案不唯一);(2)如图中,平行四边形ABCD即为所求作;(3)如图中,ABC即为所求作(答案不唯一);AB=AG,BC=CG,ACBG,ABG的面积为,ABC的面积为5,且ACB=90【点睛】本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题2
17、、(1)见解析;(2)见解析;(3),【分析】(1)反向延长OC至,反向延长OA至,反向延长OB至,使,最后连接即可;(2)利用网格的特点与旋转的性质,画出点,的对应点,再连接即可解题;(3)利用弧长公式、扇形的面积公式解题即可【详解】解:(1)见图中 ;(2)见图中 ;(3) 故答案为:, 【点睛】本题考查作图位似变换,画位似图形的一般步骤:确定位似中心,分别连接并延长位似中心和能代表原图的关键点,再关键位似比,确定能代表所作的位似图形的关键点,最后顺次连接上述各点,得到放大或缩小的图形。也考查了旋转的性质、弧长公式、扇形的面积公式等知识,掌握相关知识是解题关键3、(1)见解析,4;(2)0
18、,-2,-2,-3,-4,0;(3)或【分析】(1)先画出ABC,然后再利用割补法求ABC得面积即可;(2)先作出,然后结合图形确定所求点的坐标即可;(3)先求出PB的长,然后分P在B的左侧和右侧两种情况解答即可【详解】解:(1)画出如图所示:的面积是:;(2)作出如图所示,则(0,-2),( -2,-3),(-4,0)故填:0,-2,-2,-3,-4,0;(3)P为x轴上一点,的面积为4,当P在B的右侧时,横坐标为:当P在B的左侧时,横坐标为,故P点坐标为:或【点睛】本题主要考查了轴对称、三角形的平移、三角形的面积以及平面直角坐标系中点的坐标等知识点,根据题意画出图形成为解答本题的关键4、(
19、1)见详解;(2)见详解;(3)见详解【分析】(1)先根据以AB为边ABC是轴对称图形,得出ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股定理求出AB的长,利用平移画出点C即可;(3)先求出以AB为底等腰直角三角形腰长AC=,利用平移作出点C即可【详解】解:(1)以AB为边ABC是轴对称图形,ABC为等腰三角形,AB长为3,画以AB为直角边,点B为直角顶点ABC如图也可画以AB为直角边,点A为直角顶点ABC如图;(2)根据勾股定理AB=,AB为一腰画等腰三角形,另一腰为,以点A为顶角顶点根据勾股定理构建横1竖3,或横3竖1;点A向左1格再向下平移3格得C1,
20、连结AC1,C1B,得等腰ABC1,点A向右3格再向上平移1格得C2,连结AC2,BC2,得等腰ABC2,点A向右3格再向下平移1格得C3,连结AC3,BC3,得等腰ABC3, 点B向右3格再向上平移1格得C4,连结AC4,BC4,得等腰ABC4,点B向右3格再向下平移1格得C5,连结AC5,BC5,得等腰ABC5,点B向右1格再向上平移3格得C6,连结AC6,BC6,得等腰ABC6; (3)AB为底边画等腰三角形,等腰直角三角形腰长为m,根据勾股定理,即,解得,根据勾股定理AC=,横1竖2,或横2竖1得图形,点A向右平移2格,再向下平移1格得点C1,连结AC1,BC1,得等腰三角形ABC1,点A向左平移1格,再向下平移2格得点C2,连结AC2,BC2,得等腰三角形ABC2【点睛】本题考查网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质,掌握网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质是解题关键5、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出符合题意的答案;(2)直接利用中心对称图形的性质得出符合题意的答案【详解】解:(1)如图所示:都是轴对称图形;(2)如图所示:都是中心对称图形【点睛】此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键