强化训练京改版九年级数学下册第二十四章-投影、视图与展开图定向测评练习题(无超纲).docx

上传人:可****阿 文档编号:30732894 上传时间:2022-08-06 格式:DOCX 页数:19 大小:515.49KB
返回 下载 相关 举报
强化训练京改版九年级数学下册第二十四章-投影、视图与展开图定向测评练习题(无超纲).docx_第1页
第1页 / 共19页
强化训练京改版九年级数学下册第二十四章-投影、视图与展开图定向测评练习题(无超纲).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《强化训练京改版九年级数学下册第二十四章-投影、视图与展开图定向测评练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《强化训练京改版九年级数学下册第二十四章-投影、视图与展开图定向测评练习题(无超纲).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第二十四章 投影、视图与展开图定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图为某几何体的三视图,则该几何体是( )A圆锥B圆柱C三棱柱D四棱柱2、如图所示的立体图形是一个圆柱被

2、截去四分之一后得到的几何体,它的左视图是( )ABCD3、下列几何体中,俯视图为三角形的是( )ABCD4、如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是()ABCD5、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则2mn()A10B11C12D136、如图所示的几何体的左视图是( )ABCD7、如图,将一个装了一半水的密闭圆柱形玻璃杯水平放置时,水面的形状是( )A圆B梯形C长方形D椭圆8、如图,该几何体的主视图是( )ABCD9、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正

3、面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则ab19其中正确结论的个数有( )A1个B2个C3个D4个10、某几何体从三个方向看到的平面图形都相同,这个几何体可以是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,该展开图能折叠成的立体图

4、形是_2、用小立方块搭一几何体,它的主视图和俯视图如图所示,这个几何体最少要_个立方块,最多要_个立方块3、如图,小冰想用一条彩带缠绕圆柱4圈,正好从A点绕到正上方的B点,已知圆柱底面周长是3m,高为5m,则所需彩带最短是_m4、一个“粮仓”的三视图如图所示(单位:),则它的侧面积是_5、如图六棱柱,底面是正六边形,边长为4cm,侧棱长为7cm,则该棱柱的侧面积为_cm2三、解答题(5小题,每小题10分,共计50分)1、如图是由7个相同的小立方块搭成的几何体请画出主视图、左视图和俯视图2、如图,是公园的一圆形桌面的主视图,表示该桌面在路灯下的影子(1)请你在图中找出路灯的位置(要求保留画图痕迹

5、,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度为2m,求路灯O与地面的距离3、如图,是一个正方体的表面展开图,请回答下列问题:(1)与相对的面是 (2)若,且相对两个面所表示的代数式的和都相等,求、分别代表的代数式4、如图是由若干个完全相同的小正方体堆成的几何体(1)图中有几个小正方体;(2)画出该几何体的三视图;5、图是由若干个完全相同的小正方体组成的一个几何体请画出这个几何体从左边看和从上面看得到的图形-参考答案-一、单选题1、C【分析】根据三视图判断该几何体即可【详解】解:根据该几何体的主视图与左视图均是矩形,主视图中还有一条棱,俯视图是三角形可以

6、判断该几何体为三棱柱故选:C【点睛】本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型2、C【分析】根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论【详解】解:根据左视图的定义,该几何体的左视图是:故选:C 【点睛】此题考查了几何体左视图的判断,掌握左视图的定义是解题关键3、D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图【详解】从上方朝下看只有D选项为三角形故选:D【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形从视图反过来考虑几何体时,它有多种可能性例如,正方体的主

7、视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力4、C【分析】根据几何体的结构特征及俯视图可直接进行排除选项【详解】解:如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是;故选C【点睛】本题主要考查从不同方向看几何体,熟练掌握几何体的特征是解题的关键5、B【分析】根据几何体的主视图和俯视图,可得最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体【详解】解:由三视图可知:最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,

8、最上面一层最多有2个正方体,最少有1个正方体,m4+3+29,n4+2+17,2mn29711故选B【点睛】本题主要考查了三视图确定小立方体个数以及代数式求值,解题的关键在于能够熟练掌握根据三视图判断小立方体的个数6、B【分析】根据左视图是从左面看到的图形判定则可【详解】解:从左边看,是一个正方形,正方形的右上角有一条虚线故选:B【点睛】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键7、C【分析】根据水平面与圆柱的底面垂直,可得从上面看,水面的形状为长方形,即可求解【详解】解:水平面与圆柱的底面垂直,从上面看,水面的形状为长方形故选:C【点睛】本题主要考查了几何

9、体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从前面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键8、B【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中,看不到的棱需要用虚线来表示【详解】解:从正面看易得,该几何体的视图为B,故选:B【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,掌握主视图的概念是解题的

10、关键9、B【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可为【详解】解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开1257条棱(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三

11、个面相交得三角形(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;错误,因为ABC是等边三角形,所以ABC60(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b19错误,应该是a6,b11,a+b17故选:B【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键10、C【分析】根据三视图判断即可;【详解】的左视图、主视图是三角形,俯视图是圆,故A不符合题意;的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;的主视图、左视图、俯视图都是正方形,故C符合题意;的左

12、视图、主视图是长方形,俯视图是圆,故D不符合题意;故选C【点睛】本题主要考查了几何体三视图的判断,准确分析是解题的关键二、填空题1、圆锥【分析】展开图由两部分组成,圆和扇形,符合这一特征的几何体只有圆锥,即可求解【详解】解:由图形可得,展开图由两部分组成,圆和扇形(半圆),符合这一特征的几何体只有圆锥,圆为圆锥的底面,扇形(半圆)为圆锥的侧面故答案为圆锥【点睛】此题考查了几何体的展开图,解题的关键是熟练掌握几何体的展开图并学会逆向思维的应用2、 【分析】依据主视图可得俯视图中各位置小正方体的个数,进而得到这个几何体中正方体最少和最多的个数【详解】由主视图可得,这个几何体(第2列,第3列组合不唯

13、一)最少要1+3+4=8个立方块;由主视图可得,这个几何体最多要1+4+6=11个立方块;故答案为:8,11【点睛】本题主要考查三视图判断几何体,解题时应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状3、13【分析】把曲面展开变为平面,利用两点间线段最短,再根据勾股定理即可求解【详解】解:如图,线段AC即为所需彩带最短,由图可知,由勾股定理得,故答案为:13【点睛】本题考查两点间线段最短和勾股定理在生活中的应用将曲面问题变为平面问题是解答本题的关键4、【分析】根据三视图可知该几何体为圆锥和圆柱的结合体,进而根据三视图中的数据计算侧面积即可【详解】解

14、:由三视图可知,这个几何体上部分是一个圆锥,下部分是一个圆柱,由图中数据可知,圆锥的高为7-4=3m,圆锥的底面圆的直径为6m,圆柱的高为4m,底面圆直径为6m,圆锥的母线长m ,圆柱部分的侧面积,圆锥的侧面积,这个几何体的侧面积,故答案为:【点睛】本题主要考查了简单组合体的三视图,圆锥和圆柱的侧面积计算,解题的关键在于能够根据几何体的三视图确定几何体为圆锥和圆柱的结合体5、168【分析】根据题意可知该六棱柱的侧面展开图为长方形,再结合题意可知这个长方形的长和宽,即可求出其面积【详解】由题意该六棱柱的底面是正六边形,可知它的侧面展开图,如图,该六棱柱的侧面积是故答案为:168【点睛】本题考查由

15、展开图求几何体的侧面积正确的确定该六棱柱的侧面展开图是长方形是解答本题的关键三、解答题1、见解析【分析】主视图有3列,每列小正方形数目分别为2,1,3;左视图有2列,每列小正方形数目分别为3,2;俯视图有3列,每列小正方形数目分别为2,1,1【详解】解:如图所示,【点睛】本题考查作图三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形2、(1)见解析;(2)路灯O与地面的距离为3m【分析】(1)由题意连接 并延长,两条线的交点就是灯光的位置;(2)作OFMN交AB于E,证明OABOMN,再利用相似三角形的对应高的比等于相似比建立方程求解即可.【详解】解:(1)如图,点即为为

16、所求; (2)作OFMN交AB于E,如图,ABm,EFm,MN2m,OABOMN,AB:MNOE:OF, 即,解得OF3(m)经检验:符合题意答:路灯O与地面的距离为3m【点睛】本题考查的是中心投影的性质,相似三角形的判定与性质,掌握“相似三角形的对应高的比等于相似比”是解题的关键.3、(1)F;(2)10;【分析】(1)正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答(2)根据与是相对两个面,且所表示的代数式的和都相等,求得其和,进而分别找到相对的面根据两个面的代数式的和减去所表示的代数式,即可求得、分别代表的代数式【详解】(1)正方体的平面展开图中,相对面的特点是之间一

17、定相隔一个正方形,与相对的面是故答案为:(2)解:相对的面是且相对的面是相对的面是【点睛】本题考查了正方体的展开图形,整式的加减运算,解题关键是从相对面入手进行分析及解答问题4、(1)10;(2)见解析【分析】(1)分别数出每层的小正方体的个数并相加即可;(2)按要求画出三视图即可【详解】(1)1+3+6=10(个)即图中共有10个小正方体(2)所画的三视图如下:【点睛】本题主要考查了三视图、求几何体的小正方体的个数,要求较好的空间想象能力5、见解析【分析】由已知条件可知,左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1,据此可画出图形【详解】解:如图所示,【点睛】本题考查几何体的三视图画法由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁